当前位置: 首页 > news >正文

广州做网站一般多少钱视频编辑sdk

广州做网站一般多少钱,视频编辑sdk,上海免费关键词排名优化,试客类网站开发NCNN的编译运行交叉编译 1.在Ubuntu上编译运行ncnn1)编译ncnn x86 linux2)测试ncnn x86 linux 2. 模型转换1)onnx2)pnnx 3.在x86上加载推理模型1)准备工作2)编写C推理代码3)编写Cmakelist编译 4.在MIPS上进行交叉编译推理1&#x…

NCNN的编译运行交叉编译

  • 1.在Ubuntu上编译运行ncnn
    • 1)编译ncnn x86 linux
    • 2)测试ncnn x86 linux
  • 2. 模型转换
    • 1)onnx
    • 2)pnnx
  • 3.在x86上加载推理模型
    • 1)准备工作
    • 2)编写C++推理代码
    • 3)编写Cmakelist编译
  • 4.在MIPS上进行交叉编译推理
    • 1)编译mips版本opencv
    • 2)编译mips版本ncnn
    • 3)编译上述efficientnetb0.cpp demo程序
    • 4)运行推理

1.在Ubuntu上编译运行ncnn

1)编译ncnn x86 linux

// ubuntu安装依赖
sudo apt install build-essential git cmake libprotobuf-dev protobuf-compiler libomp-dev libvulkan-dev vulkan-tools libopencv-dev
// 下载ncnn以及三方库
git clone https://github.com/Tencent/ncnn.git
git submodule update --init
// 编译
cd ncnn
mkdir -p build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DNCNN_VULKAN=ON -DNCNN_BUILD_EXAMPLES=ON ..
make -j$(nproc)

在这里插入图片描述

// 安装到install文件夹
make install prefix=./install

检查一下install文件夹里是不是生成了bin,include和lib
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2)测试ncnn x86 linux

上面我们编译的时候打开了-DNCNN_BUILD_EXAMPLES=ON,所以这里就用编译好的例子试一下,由于squeezenet提供了权重文件,所以直接测这个。
在这里插入图片描述
把权重文件复制到build/examples里
在这里插入图片描述
我们可以看一下squeezent.cpp里,ncnn需要加载.bin和.param模型文件,所以放到同一文件夹。
在这里插入图片描述
然后运行

cd build/examples
./squeezenet ../../images/256-ncnn.png

在这里插入图片描述
运行成功!

2. 模型转换

这里用pytorch onnx来举例子,简单的模型可以用ncnn编译好的bin来直接转换。

1)onnx

在这里插入图片描述

./onnx2ncnn a.onnx a.param a.bin

这边的param就是模型的结构描述文件,bin是模型的具体权重
如果不行尝试使用onnx-simplifier先处理一下模型

onnxsim a.onnx a_sim.onnx

然后再转换a_sim.onnx,这里不多赘述,自行尝试。

2)pnnx

如果我们直接从onnx转换到ncnn的模型经常会出现不兼容不能完全转换的情况,所以我们这边直接使用pnnx来进行模型转换。

PyTorch Neural Network eXchange
pnnx github
PyTorch Neural Network eXchange(PNNX) is an open standard for PyTorch model interoperability. PNNX provides an open model format for PyTorch. It defines computation graph as well as high level operators strictly matches PyTorch.

我们以efficientnet为例
链接: https://github.com/lukemelas/EfficientNet-PyTorch

import torch
from torchsummary import summary
from efficientnet_pytorch import EfficientNetdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = EfficientNet.from_pretrained('efficientnet-b0', advprop=True, num_classes=10)
model.to(device)
# 加载训练好的权重
params_dict = torch.load(r"best.pth")
# 如果训练的时候是多卡使用DataParallel来训的需要用.module.state_dict()得到权重dict
model.load_state_dict(params_dict.module.state_dict())summary(model, (3, 416, 416))
# efficientnet训练时候用了memory efficient swish激活,导出的时候换成普通swich提高兼容性
model.set_swish(memory_efficient=False)
# model_pt = torch.save(model_pt)model.eval()dummy_in = torch.randn(1, 3, 416, 416, requires_grad=True).to(device)
# 导出torchscript权重
mod = torch.jit.trace(model,dummy_in)
torch.jit.save(mod,"efb0_pnnx.pt")
pip install pnnx
pnnx ./efb0_pnnx.pt inputshape=[1,3,416,416]

然后会生成一堆文件,我们需要的就是.param和.bin文件
在这里插入图片描述

3.在x86上加载推理模型

1)准备工作

编译好的ncnn(看第一步)
编译好的opencv(如果不想重新编译直接sudo apt install libopencv-dev)

2)编写C++推理代码

文件结构
demo
----CMakeList.txt
----1.jpg
----src
--------effcientnetb0.cpp
----build
----bin

#include <iostream>
#include "net.h"
#include <algorithm>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <stdio.h>int main(int argc, char** argv)
{const char* img_path = argv[1];// opencv读取图片cv::Mat m = cv::imread(img_path, 1);// 图像归一化(这边视情况采用训练相同的归一化方法)m = m / 255.0 ;if (m.empty()){fprintf(stderr, "cv::imread %s failed\n", img_path);return -1;}// 创建ncnn网络ncnn::Net efficientb0; efficientb0.opt.use_vulkan_compute = true; // 加载权重if (efficientb0.load_param("model_param/efficientb0/efb0_pnnx.ncnn.param"))exit(-1);if (efficientb0.load_model("model_param/efficientb0/efb0_pnnx.ncnn.bin"))exit(-1);// 把opencv mat的data矩阵加载到ncnn mat中准备作为推理的输入ncnn::Mat in = ncnn::Mat::from_pixels_resize(m.data, ncnn::Mat::PIXEL_BGR2RGB, m.cols, m.rows, 416, 416);ncnn::Extractor ex = efficientb0.create_extractor();//在.param文件中找到输入的节点名称in0ex.input("in0", in);  ncnn::Mat out;//在.param文件中找到输出的节点名称out0,推理结束ex.extract("out0", out); //输出推理结果for (int i = 0; i < out.w; i++){std::cout << i <<out[i] << std::endl;}return 0;
}

如何查看输入输出的名称如下图
在这里插入图片描述
在这里插入图片描述

3)编写Cmakelist编译

project(NCNN_DEMO)
cmake_minimum_required(VERSION 2.8.12)
set(CMAKE_BUILD_TYPE Debug)set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "改成第一步编译好的ncnn路径xxx/ncnn/build/install/")find_package(OpenCV REQUIRED)
find_package(ncnn)
if(ncnn_FOUND)set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/bin)add_executable(efficientnetb0 src/efficientb0.cpp)target_link_libraries(efficientnetb0 ncnn ${OpenCV_LIBS})else()message(WARNING "ncnn not found, please check CMAKE_PREFIX_PATH")
endif()   
# 创建build文件夹
cd build
cmake ..
make
//使用编译好的程序进行推理
./bin/effcientnetb0 ./1.jpg

输出结果
在这里插入图片描述可以看到linear层的推理结果输出了,选最大的一个index就是分类结果,至此,x86上全部的推理工作就做好了。

4.在MIPS上进行交叉编译推理

Arm等平台教程比较多,我们使用mips的嵌入式开发版君正x2000进行讲解。

1)编译mips版本opencv

2)编译mips版本ncnn

3)编译上述efficientnetb0.cpp demo程序

4)运行推理

http://www.yayakq.cn/news/889811/

相关文章:

  • 普陀做网站公司集宁做网站的公司
  • 苏州网站关键词优化推广南宁做网站科技公司
  • 建设一个旅游网站必备的a00000网站建设丽丽
  • 网站素材 下载php网站开发哪个好
  • 网站服务器过期了跨境电商平台有哪些前期费用
  • 旅行社网站建设策划书免费微商城平台官网
  • 51网站怎么打不开了怎样提高网站的权重
  • 如东网站开发电子商务网站建设规划范文
  • 做网站前端工资17173金币交易平台
  • 做网站用的是什么语言wordpress访问需要密码
  • 网站关键词百度没有收录福永做网站
  • 营销型网站搭建的工作学做网站开发吗
  • 家教网站建设模板怎么做提卡密网站万游
  • 单位门户网站建设工作建议html5网页设计源代码
  • 阳澄湖大闸蟹网站建设安陆做网站公司
  • 有经验的做网站长沙做网站备案
  • 株洲网站建设 公司有什么值得做的网站
  • 电商网站建设包括哪些内容万词霸屏百度推广seo
  • 帮传销做网站违法吗wordpress 迁移服务器
  • 重庆网站建设 重庆网站制作c2c有哪些平台
  • 建设网站前端中国建设银行官网站e路护下载
  • 网站建设预算项目代运营怎么做
  • 手机网站设计创意说明做网站需要具备什么要求
  • 江苏省建设工程八大员考试网站长春软件开发
  • 大家都在哪些网站上做医药招商团员电子档案查询网
  • 浅谈阿里企业的电子网站建设旅游推广赚佣金哪个平台好
  • 北京广告网站建设企业形象包装公司
  • 怎么买域名建网站网站建设体质喝什么茶
  • 信阳网站建设一级a做爰片在线网站
  • 360个人网站怎么推广在那里建立公司网站