当前位置: 首页 > news >正文

简单的做网站软件有啥素材图库

简单的做网站软件有啥,素材图库,企业建设网站方案设计,公司想做个网页设计用A*算法求解八数码问题 实现两种启发函数实现A*算法测试 实现两种启发函数 采取两种策略实现启发函数: 策略1:不在目标位置的数字个数策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数) # 策略1: 不在目标位置…

用A*算法求解八数码问题

  • 实现两种启发函数
  • 实现A*算法
  • 测试

实现两种启发函数

采取两种策略实现启发函数:

  • 策略1:不在目标位置的数字个数
  • 策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数)
# 策略1: 不在目标位置的数字个数,即 state 与 goal_state 不相同的数字个数
def h1(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] != goal_state[i][j] and state[i][j] != 0:distance += 1return distance# 功能性函数,用于查找给定数字 num 在 goal_state 中的坐标
def find_num(num, goal_state):for i in range(3):for j in range(3):if goal_state[i][j] == num:return i, jreturn -1, -1# 策略2: 曼哈顿距离之和
def h2(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] == 0:continueif state[i][j] == goal_state[i][j]:continuegoal_i, goal_j = find_num(state[i][j], goal_state)distance += abs(i - goal_i) + abs(j - goal_j)return distance# 测试
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]# 不在目标位置的数字:1、2、8、6,共 4 个
# 1 需移动 1 步到达正确位置
# 2 需移动 1 步到达正确位置
# 8 需移动 2 步到达正确位置
# 6 需移动 1 步到达正确位置
# 曼哈顿距离共 5 步print(h1(start_state, goal_state))  # 4
print(h2(start_state, goal_state))  # 5

实现A*算法

为了便于替换启发函数,将其作为参数传入函数:

# 定义A*算法函数
def astar(start_state, goal_state, h):'''params:start_state - 3x3 list 初始状态goal_state  - 3x3 list 目标状态h           - function 启发函数returns:expanded_nodes - 扩展节点数run_time       - 算法运行时间path           - 算法运行路径ps. 当路径不存在时,会返回 run_time = 0, path = None'''start_time = time.time()  # 算法开始open_list = [(h(start_state, goal_state), start_state)]  # 存储待扩展的节点的优先队列closed_set = set()  # 存储已经扩展过的节点的集合came_from = {}      # 记录节点之间的关系,即每个节点的父节点是哪个节点expanded_nodes = 0  # 记录扩展节点的数量while open_list:  # 带扩展节点队列不为空_, current_state = heapq.heappop(open_list)  # 弹出优先级最高的节点expanded_nodes += 1if current_state == goal_state:  # 找到目标状态# 回溯路径path = [current_state]while tuple(map(tuple, current_state)) in came_from:current_state = came_from[tuple(map(tuple, current_state))]path.append(current_state)end_time = time.time()  # 记录算法结束时间return expanded_nodes, end_time-start_time, path[::-1]closed_set.add(tuple(map(tuple, current_state)))  # 将当前节点状态加入已扩展节点集合zero_i, zero_j = find_num(0, current_state)  # 找到当前的空格坐标moves = [(0, 1), (0, -1), (1, 0), (-1, 0)]  # 四周的格子for di, dj in moves:new_i, new_j = zero_i + di, zero_j + dj  # 移动的数字if 0 <= new_i < 3 and 0 <= new_j < 3:  # 确保新位置在范围内new_state = [row[:] for row in current_state]  # 拷贝 current_statenew_state[zero_i][zero_j], new_state[new_i][new_j] = current_state[new_i][new_j], current_state[zero_i][zero_j]  # 移动空白格if tuple(map(tuple, new_state)) in closed_set:continue  # 如果新状态已经扩展过,则跳过new_cost = len(came_from) + 1 + h(new_state, goal_state)  # 计算新状态的代价heapq.heappush(open_list, (new_cost, new_state))  # 将新状态加入优先队列came_from[tuple(map(tuple, new_state))] = tuple(map(tuple, current_state))  # 更新新状态的父节点信息# 无可行解return expanded_nodes, 0, None

测试

首先,定义一个函数 print_path() 用于查看路径:

def print_path(path):step = 0for state in path:print("Step. ", step)for row in state:print(row)step += 1

设置初始状态和目标状态进行测试:

# 设置初始状态和目标状态
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法共扩展 28 个节点,耗时 0.00037217140197753906s,路径如下:
调用 h2 启发函数的 A* 算法共扩展 17 个节点,耗时 0.0002200603485107422s,路径如下:

测试鲁棒性——当可行解不存在时:

# 设置初始状态和目标状态
start_state = [[7, 8, 3],[1, 5, 2],[6, 0, 4]
]goal_state = [[1, 2, 3],[4, 5, 6],[7, 8, 9]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法无法得到可行解。
调用 h2 启发函数的 A* 算法无法得到可行解。

国科大的朋友们提交之前改一改哈!因为作者也是这么交的~

http://www.yayakq.cn/news/70507/

相关文章:

  • 开商城网站多少钱搭建一个小程序需要多少钱
  • 岳西县建设局网站公司宣传片视频制作
  • seo服务外包价格seo优化网络公司
  • 建站哪家好社区文山网站建设公司
  • 东阳网站推广利用网站新媒体宣传法治建设
  • phpcmsv9 网站搬家京伦科技网站做的怎么样
  • 石家庄网站seo优化wordpress发帖时间
  • 中国做二手房最大的网站有哪些仁怀企业网站建设
  • 以域名做网站关键词公司网站建设的请示
  • 宜昌最权威网站建设公司wordpress修改上传附件大小
  • 自助建站视频网站小白怎么做网站赚钱
  • 免费数据分析网站wordpress主题 翠竹林
  • 成都 商业网站建设网站设计网站建设哪家快
  • 网上网站怎么做郑州网站推广方式
  • 郑州做网站和推广哪家好wordpress更改默认头像
  • 网页翻译网站手机网站制作建设
  • 需要做网站建设的行业有哪些网站建设个人主要事迹
  • 天津网站建设 文率科技提高网站互动性
  • 绍兴公司做网站做ppt介绍网站
  • 企业网站管理系统排名企业网站seo方案
  • 轻淘客网站模板外贸出口怎么找客户
  • 企业网站建设培训网站开发设计概述
  • 响应式网站都有哪些软件设计和软件开发的区别
  • 大学做网站wordpress onepress
  • 网站开发语言有php有创意的营销策划案例
  • 网站建设的价wordpress页面加速
  • 网站代码优化方法网站群项目建设实施进度计划
  • 网站建设工期及预算wordpress收费采集
  • 吉林省建设网站哪个网站可以做视频软件
  • 建立网站 知乎免费做简易网站