当前位置: 首页 > news >正文

有做软件的网站有哪些网页设计英语怎么说

有做软件的网站有哪些,网页设计英语怎么说,wordpress一键生成app,宁波网络公司联系方式时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比 目录 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 时序预测 | …

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

目录

    • 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1

2
3
4
5
6

基本介绍

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比。
1.MATLAB实现EEMD-LSTM、LSTM时间序列预测对比;
2.时间序列预测 就是先eemd把原输入全分解变成很多维作为输入 再输入LSTM预测 ;
3.运行环境Matlab2018b及以上,输出RMSE、MAPE、MAE等多指标对比,
先运行main1_eemd_test,进行eemd分解;再运行main2_lstm、main3_eemd_lstm;再运行main4_compare,两个模型对比。

模型搭建

EEMD-LSTM和LSTM集合是两种用于时间序列预测的方法,它们结合了经验模态分解 (Empirical Mode Decomposition, EMD) 和长短期记忆神经网络 (Long Short-Term Memory, LSTM)。这两种方法都具有一定的优势和适用场景,下面对它们进行对比。
EEMD-LSTM:
EEMD是一种数据分解方法,通过将时间序列分解成多个固有模态函数 (Intrinsic Mode Functions, IMF) 和一个剩余项,将非线性和非平稳的时间序列转化为多个平稳的子序列。
EEMD能够将时间序列的相关信息提取到不同的IMF中,每个IMF代表了时间序列中的不同频率成分。
LSTM是一种适用于序列数据的循环神经网络,能够捕捉长期依赖关系,适用于处理时间序列数据。
EEMD-LSTM的基本思路是将原始时间序列通过EEMD进行分解,然后将每个IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测,最后将预测结果合并得到最终的预测结果。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。优势在于通过建立多个模型,可以利用不同的初始化条件和参数组合,增加了模型的多样性,提高了整体的预测准确性。
对比:EEMD-LSTM利用EEMD将时间序列分解成不同频率的子序列,然后利用LSTM对每个子序列进行预测,最后将预测结果合并。这种方法能够更好地处理非线性和非平稳的时间序列,能够提取出不同频率成分的信息。然而,EEMD的分解过程可能会引入一些噪声,并且需要额外的计算步骤。
LSTM集合通过构建多个LSTM模型,利用不同的初始化条件和参数组合,增加了模型的多样性,提高了预测准确性。这种方法相对简单,不需要进行数据分解,适用于一般的时间序列预测任务。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比;
  • 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,专栏外只能获取该程序
%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.yayakq.cn/news/400583/

相关文章:

  • 自己做网站投放有流量么wordpress安装后台
  • 怎样建设好门户网站个人网站名字取名怎么做
  • 网站建设合同用贴印花税吗wordpress3.9
  • 怎么网站设计大连手机自适应网站制作费用
  • 织梦购物网站整站源码深圳排名seo公司
  • 阿坝网站制作建设银行网站短信错误6次
  • 网站后台网址后缀网站建设 新闻
  • title 株洲网站建设华为云建站官网
  • 如何制作统计小程序萧山网站优化
  • 做云教育集群网站有文化底蕴的公众号名字
  • 游戏模型外包网站重庆电力建设设计公司网站
  • 网站用什么系统好用故事式软文范例500字
  • 马鞍山 做网站软件开发过程包括哪些阶段
  • 奉化网站建设报价今天的湖北新闻
  • 长沙网站建设大全网站关键词作用
  • 永兴网站建设厦门网站建设seo
  • 淘宝客模板 带程序自动采集 淘宝客网站源码 最新懒人淘宝客源码网站的风格与布局的设计
  • wordpress建站如何制作微信wordpress 文章透明
  • 嘉兴网站开发与制作制作一个网站代码
  • 刷外链网站拓者设计室内设计官网首页
  • 增城住房和建设局网站网店购物系统
  • 做响应式网站好不好wordpress会员中心主题
  • 网站快速备案多少钱宁国网站建设
  • 动易网站制作教程网业协同具体指什么
  • 网站制作东莞网络营销的常用策略
  • 建设网站要点福建省城乡住房建设厅网站
  • 四川住房建设和城乡建设厅网站易语言做网站登录
  • 重庆建设厂招工信息网站百姓网招聘信息
  • 长春网站制作教程wordpress设计导航
  • 污染网站代码四川手机网上营业厅