当前位置: 首页 > news >正文

福建省建设职业注册资格管理中心网站网页制作实训内容

福建省建设职业注册资格管理中心网站,网页制作实训内容,网站开发前端框架和后端框架,把给公司做的设计放到自己的网站上目录detrend函数去除基线多项式拟合原函数BEADS 基线处理小波算法经验模态分解(EMD)参考detrend函数去除基线 detrend函数只能用于去除线性趋势,对于非线性的无能为力。 函数表达式:y scipy.signal.detrend(x): 从信号中删除线…

目录

  • detrend函数去除基线
  • 多项式拟合原函数
  • BEADS 基线处理
  • 小波算法
  • 经验模态分解(EMD)
  • 参考

detrend函数去除基线

detrend函数只能用于去除线性趋势,对于非线性的无能为力。

函数表达式:y = scipy.signal.detrend(x): 从信号中删除线性趋势:

x:含有基线干扰的信号;y:去除基线干扰后的信号。

detrend去基线代码显示:

from scipy import signal
import matplotlib.pyplot as plt
import numpy as npt = np.linspace(0, 5, 100)
# normal是产生一个高斯分布
x = t + np.random.normal(size=100)
plt.subplot(2, 1, 1)
plt.plot(t, x, linewidth=3)
plt.subplot(2, 1, 2)
plt.plot(t, signal.detrend(x), linewidth=3)
plt.show()

结果展示:
在这里插入图片描述
通过上图可以看到detrend去线性趋势效果很不错。

多项式拟合原函数

很容易理解,就是通过多项式拟合一个新的曲线,使拟合出来的曲线与原图像尽可能接近,同时又能去除图像中的噪声和基线等多余的因素。

代码显示为:

import os
import matplotlib.pyplot as plt
import scipy.signal
import numpy as npdef main():# 项目目录dir = "D:\\a_user_file\\8_data"filename = 's1_run.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[4]))sig = raw_datatmp_smooth1 = scipy.signal.savgol_filter(sig, 53, 9)tmp_smooth2 = scipy.signal.savgol_filter(sig, 53, 3)plt.subplot(3,1,1)plt.plot(sig)plt.subplot(3,1,2)plt.plot(tmp_smooth1 * 0.5, label='mic'+ '拟合曲线-21', color='red')plt.subplot(3,1,3)plt.plot(tmp_smooth2 * 0.5, label='mic'+ '拟合曲线-53', color='green')plt.show()main()

显示结果如下:
在这里插入图片描述

BEADS 基线处理

详细内容可参考:
https://ww2.mathworks.cn/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparsity?s_tid=AO_FX_info

小波算法

小波算法去噪和去基线是先用滤波器对原始信号进行分解,经过下采样得到分解的高频系数D(细节部分)和低频系数A(近似部分),多层分解只需要对上一层分解出来的低频分量继续分解即可。这个过程就是小波分解。

从分解的最底层往上重构出信号,首先是上采样,一般采用隔值插零的方法,即增加数据量来达到与原始信号长度相同的数据,然后分别通过重构的高通滤波器g和低通滤波器h,最终重构出原始信号,如果代码编写的没问题,那么重构出的信号与原始信号完全一致。

而小波变换去噪的过程就是在分解后的各层系数中找出噪声所在的层,对该层的低频系数或者高频系数进行处理,比如软硬阈值处理,处理后再经过重构,即可重构出去除噪声的信号。

import numpy as np
import matplotlib.pyplot as plt
import pywt
import osdef signal():# 项目目录dir = "D:\\a_user_file\\8_data"filename = '1.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[0]))return raw_datadata = signal()
x = range(0, len(data))
w = pywt.Wavelet('db8') # 选用Daubechies8小波
maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
threshold = 0.5 # Threshold for filtering
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db8', level=maxlev) # 将信号进行小波分解
for i in range(1, len(coeffs)):coeffs[i] = pywt.threshold(coeffs[i], threshold*max(coeffs[i])) # 将噪声滤波
datarec = pywt.waverec(coeffs, 'db8')plt.subplot(2,1,1)
plt.plot(data, color="black", linewidth=2.0, linestyle="solid")
plt.subplot(2,1,2)
plt.plot(datarec, color="red", linewidth=2.0, linestyle="solid")
plt.show()

用小波变换去噪的关键是找到对应噪声、基线漂移所在的频率段,去掉对应的频率段,就可以生成新的去噪去基线信号了。

经验模态分解(EMD)

EMD方法认为任何信号都可以分解为若干个不同的本征模态函数,和一个残余量稳态量。其中各个本征模态函数反映了信号的局部特性,残余量反映了信号的趋势或均值。EMD法采用“筛”选的方法从原始信号中将残余量分离出来。

参考

https://ww2.mathworks.cn/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparsity?s_tid=AO_FX_info
https://blog.csdn.net/qq_41620350/article/details/115981740
https://blog.csdn.net/u010565765/article/details/69397415

http://www.yayakq.cn/news/157483/

相关文章:

  • 0基础多久学会网站架构wordpress无法批量管理
  • wordpress版权图片乐陵seo网站优化
  • 石家庄网站建设汉狮怎么样安全的网站建设服务
  • 如何建立自己网站视频教程怎么样才能把网站关键词做有排名
  • 鄂州市网站设计网站的关键点
  • 淘宝网站如何在邮件里做超链接克隆网站后怎么做
  • 用Off做网站高校网站平台建设
  • 网站推广排名收费wordpress自动保存
  • 成都模板网站建设服务做英文网站 是每个单词首字母大写 还是每段落首字母大写
  • 怎样为企业设计网站网站建设要注意些什么
  • jsp网站开发小程序海外网站seo
  • app开发公司的联系方式苏州首页排名关键词优化
  • 咸阳 网站建设wordpress单位内网做网站
  • 黑龙江网站建站建设用ps做网站得多大像素
  • 资讯类网站建设wordpress 双语主题
  • 广东移动网站seo是什么专业的课程
  • 做电影网站用什么软件叫什么名字吗宁夏建设工程招投标管理中心网站
  • 网站建设教程 冰美人视频WordPress制作小说网站
  • 网站架构分析工具wordpress手机显示不出主题
  • 购物网站开发环境有名的平面设计公司
  • 编程猫官方网站jsp做网站案例
  • 江门做网站设计网上服务大厅登录平台
  • 二级网站pc开奖网站建设
  • asp与sql网站建设wordpress头像本地化
  • 学做室内效果图的网站外贸商城网站制作公司
  • 泉州微信网站建设山西城乡建设学校报名网站
  • 重庆博达建设集团股份有限公司网站桂林生活网租房
  • 专业做网站广州东北石油大学秦皇岛吧
  • 如何打开网站绍兴做网站价格
  • 防红短网址一键生成中山网站推广优化