当前位置: 首页 > news >正文

网站联系方式设置要求山东泰山新闻

网站联系方式设置要求,山东泰山新闻,房产信息网的价格和实际价格,做彩票的网站有哪些1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证&#xff…

1. 引言

Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出:

  • 其主要目的是:让SNARK前端生成仅需做lookup的电路。
  • Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证:
    • 更易于审计单个lookup argument和各种lookup tables,不再需要数千行的硬编码电路。
  • 承认现有的lookup argument方案具有性能瓶颈 但 预测将得到改进:
    • 强调可能需要支持巨大table,如size为 2 128 2^{128} 2128的table。
  • Lasso/Jolt可能可实现该愿景?

多年来,ZKP的核心元素为check:

  • A ∗ B + D = = C A*B+D==C AB+D==C

在构建整个电路过程中,重复运用该check。将这种表示的电路称为R1CS。

但是,对于某些任务,R1CS昂贵得令人望而却步,为此,引入了lookup arguments的大量使用。当前,很多ZKP使用lookup argument + R1CS变种多项式承诺 来构建电路。

仅使用R1CS来构建电路存在一些障碍。为此,人们创建了一些hand tuned circuits,在这些hand tuned circuits中,同时包含了多项式约束和lookup arguments。这些hand tuned circuits是特定的,并不是很容易扩展。

1.1 多项式约束

多项式约束是复杂的。电路实现人员构建大量多项式方程式,整个电路定义为由多项式方程式组成的系统。
对这个“由多项式方程式组成的系统” 的solution,构成了a valid proof。很难对方程组的结果进行推理。目前的形式化验证工具无法求解素数域中的多项式方程。

1.2 Lookup argument

lookup argument为set membership check。lookup argument:

  • 首次用于做高效的big integer arithmetic。
  • 目前还用作VM的控制流
  • 做某些不是snark-friendly的运算
  • 并不是对所有运算都是更高效的
  • 每个lookup会引入一定的prover开销
  • 目前控制使用lookup argument的次数 的原因在于,其对Prover来说是昂贵的。

2. 为何Lookup arguments很好?

2.1 语言

当前的snark friendly语言对于新程序员来说是难学的。其使用了不同于之前范式的素数域和多项式约束。而仅使用lookup arguments的语言可能会更简单。当前的语言擅长做snarks定向计算,但当用于传统计算时要昂贵很多。

而仅有lookup的语言,将:

  • 既擅长做snarks定向计算
  • 也擅长做传统计算

2.2 安全审查

审计人员不再需要取对一组多项式方程式求解。lookup arguments推理起来要简单得多。

如:某电路具有一个ANDgate,有2个输入bit 变量,输出为这2个输入的AND运算结果。

多项式方案为:

(x)(x-1) = 0 
y(y-1) = 0 
x*y = out
return(out)

Lookup方案为:

out = get x,y from AND table
return(out)

其中AND lookup table为:
在这里插入图片描述

由此可知,Lookup方案要简单得多。因此,对于仅有lookup的电路,要更容易找出bug。

2.3 形式化验证

形式化验证工具需对一组多项式方程式求解。现有的形式化验证工具不擅长求解素数域中的多项式方程——这样会引入大量额外工作。

而仅使用lookup argument的话,则可使用现有的形式化验证工具,同时可能可探索一些其它方案。

lookup argument限制了电路中任意point的有限变量集合,使得可能的变量集合由 2 254 2^{254} 2254 限制为了 2 2 2 2 16 2^{16} 216。这样甚至可支持做state space enumeration 来确认 “电路是正确的”。

2.4 信息论对比

为高效将程序描述为电路,需构建一个电路来将“某输入”映射为“正确的输出”。可将“电路”看成是“每个prover time second编码的信息”。这似乎是对比“实现电路的不同方式”的一种好角度。

多项式约束具有有限的degree:

  • 因为degree会影响Prover time。
  • degree会限制可编码的信息。

如degree为5的多项式可将5个输入值 映射为 5个输出值。除非增加degree,否则无法在该多项式中包含更多的值。

很多情况下,这样是ok的,因为是使用多项式约束的structure来做计算。因此,乘法运算对应为多项式运算 A ∗ B = = C A*B==C AB==C,而XOR运算不是,需要编码为keys to values。

Lookup argument可包含更多的信息。之前已限制lookup table size为 2 28 2^{28} 228个元素。但近期研究成果表明,circuit size仅受限于可灵活完成的最大trusted setup——会限制table_size。
Baloo: Nearly Optimal Lookup Arguments中指出:

  • 单个多项式约束中可包含约 5 ∗ 2 254 5*2^{254} 52254位信息。
  • Lookup argument可包含 2 254 ∗ table_size 2^{254}*\text{table\_size} 2254table_size

当使用多项式约束的structure时,多项式约束是很有用的。但随着更大尺寸的table变得可行,这种优势将消失。

3. 结论

若可仅使用lookup argument来高效定义电路,则将由更简单的工具和电路。
这样,lookup argument 将总是比 多项式约束 效率更高。

未来将关注构建以lookup为中心的ZKP工具。

4. 展望

未来工作:

  • 比较现有电路的效率
  • 构建仅有lookup的语言示例
  • 对不同lookup argument效率做对比,并预测改进空间。
  • 寻找lookup argument优于(和劣于)多项式约束的实例:
    • 寻找lookup argument 和 多项式约束 的worst case。
    • 对现有电路进行benchmark,比对效率:
      • lookup argument
      • lookup + polynomial constraints

参考资料

[1] Lookup Singularity
[2] The lookup singularity - how zero-knowledge proofs can be made simpler and easier to review.

Justin Thaler系列博客

  • SNARK Design
  • Rollup项目的SNARK景观
  • SNARK原理示例
  • SNARK性能及安全——Prover篇
  • SNARK性能及安全——Verifier篇
  • sum-check protocol in zkproof
  • sum-check protocol深入研究
  • Lasso、Jolt 以及 Lookup Singularity——Part 1
  • Lasso、Jolt 以及 Lookup Singularity——Part 2

lookup系列博客

  • PLOOKUP
  • PLOOKUP代码解析
  • Efficient polynomial commitment schemes for multiple points and polynomials学习笔记
  • PLONK + PLOOKUP
  • PlonKup: Reconciling PlonK with plookup
  • PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge 学习笔记
  • Plonk代码解析
  • RapidUp: Multi-Domain Permutation Protocol for Lookup Tables学习笔记
  • Lookup argument总览
  • Halo2 学习笔记——设计之Proving system之Lookup argument(1)
  • 多变量lookup argument
  • cq:fast lookup argument
  • Lookup Argument性能优化——Caulk
  • 2023年 ZK Hack以及ZK Summit 亮点记
  • Research Day 2023:Succinct ZKP最新进展
  • Lasso、Jolt 以及 Lookup Singularity——Part 1
  • Lasso、Jolt 以及 Lookup Singularity——Part 2
http://www.yayakq.cn/news/663220/

相关文章:

  • 微信公众号运营规则新乡百度关键词优化外包
  • 网站空间格式asp网站开发 密码
  • 东莞食品公司东莞网站建设国外做节目包装的网站
  • 大兴安岭网站建设兼职wordpress 共用数据库
  • 自己做文学网站赚钱吗wordpress 注入
  • 网站建设建设公司有哪些营销技巧第一季无删减
  • 网站建设需要什么技术网站查外链
  • 网站运营目的怎么申请 免费网站
  • 东莞网站建设分享seo潮州网站推广教程
  • 嘉兴网站建设策划方案自己开店
  • 沈阳装修公司网站建设app软件开发公司推荐
  • 珠海建网站公司全响应网站
  • 国外免费舆情网站有哪些软件有限责任公司怎么注册
  • 给女朋友做网站 知乎专业网站建设品牌策划方案
  • 网站备案名字填写wordpress 5.2.2安装要求
  • 武威 网站开发网站上怎么做微信支付接口
  • 电子商务平台自身提供的数据工具温州seo顾问
  • 东莞市建设工程监督网站洛阳霞光做网站公司
  • 留学网站 模板深圳网络科技有限公司排名
  • 建设网站如何赢利网络营销的特点有()
  • 免费自建网站国外那些网站做展厅比较好
  • 网站建设行业分析报告百度爱采购下载app
  • php做网站首页的代码分析一个网页设计
  • 广州网站建设哪家强网页和网站做哪个好
  • 风中有朵雨做的云网站观看做电影平台网站怎么赚钱的
  • 龙岗网站制作效果东港网站建设
  • 建网站找我旅游网页首页
  • 手机网站描述菲律宾 做菠菜网站
  • 人才微网站开发网址源码在线查看
  • 重庆网站制作公司重庆恢复wordpress修订版本号