当前位置: 首页 > news >正文

制作装饰公司网站自己设计家装的免费设计软件

制作装饰公司网站,自己设计家装的免费设计软件,深圳做微信网站设计,西安seo排名外包博主在进行DINO-DETR模型实验时,使用缩减后的COCO数据集进行训练,发现其mAP值只能达到0.27作用,故而修改了下pycocotool的代码,令其输出每个类别的AP值,来看看是由于什么原因导致这个问题。 之所以这样是因为博主认为各…

博主在进行DINO-DETR模型实验时,使用缩减后的COCO数据集进行训练,发现其mAP值只能达到0.27作用,故而修改了下pycocotool的代码,令其输出每个类别的AP值,来看看是由于什么原因导致这个问题。
之所以这样是因为博主认为各类别的AP值是不均匀的,必定由学得好的与学得不好的。
参数设置:batch-size=1,lr=0.00005
使用22个epoch中训练结果最好的那个进行验证,结果如下:

【truck,car,bus】

分别为0.02,0.11,0.70,map为0.28
在这里插入图片描述

batch-size=2,lr=0.0001,epoch=24。结果如下:

在这里插入图片描述

随后使用官方给定的训练后的模型进行测试:

'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck'

对应car,bus,truck为:0.49,0.72,0.42,map值为0.54
在这里插入图片描述

上述实验结果首先证明了博主的猜想,即各个类别的AP值是不同的,也就说明其并非是对所有类别信息都有一个较好的结果。
其次尝试分析一下造成这个问题的原因。

首先在我们缩小的COCO数据集上,尽管car的标注较多,但目标都较小,而且存在很大程度的遮挡。且car在出现时背景复杂多变(有时是通过窗户看到,有时出现在马路上,有时旁边出现其他的物体),周边出现多种信息。
而bus尽管数量上并不占优,但其在出现时特征较为明显,显示较为完整,且出现时背景较为固定。(多为公路上出现)故而其学习效果较好。

博主选择了几个具有代表性的图像进行展示,用以证实博主上面的猜想。

在这里插入图片描述

使用DINO-DETR官方给定的权重模型来验证完整COCO数据集,完整结果如下:

IoU metric: bboxAverage Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.491, per category = [ 0.607  0.368  0.493  0.505  0.750  0.727  0.723  0.428  0.321  0.3130.709  0.690  0.530  0.293  0.434  0.793  0.721  0.654  0.603  0.6380.717  0.781  0.752  0.730  0.192  0.468  0.216  0.421  0.528  0.7290.301  0.457  0.518  0.509  0.388  0.423  0.576  0.461  0.568  0.4340.442  0.495  0.464  0.280  0.264  0.471  0.310  0.270  0.431  0.3920.262  0.277  0.481  0.610  0.560  0.447  0.345  0.499  0.306  0.5190.336  0.664  0.637  0.676  0.651  0.401  0.579  0.416  0.638  0.3980.566  0.424  0.671  0.200  0.568  0.418  0.356  0.540  0.169  0.349]Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.667, per category = [ 0.854  0.625  0.734  0.775  0.898  0.854  0.879  0.590  0.578  0.5790.869  0.777  0.706  0.406  0.639  0.921  0.852  0.856  0.832  0.8480.898  0.910  0.925  0.899  0.339  0.683  0.363  0.644  0.740  0.9090.574  0.618  0.746  0.735  0.630  0.707  0.791  0.698  0.822  0.6230.654  0.657  0.637  0.442  0.377  0.609  0.466  0.378  0.566  0.5120.446  0.417  0.639  0.797  0.714  0.650  0.529  0.634  0.498  0.6580.469  0.794  0.813  0.806  0.831  0.597  0.737  0.622  0.767  0.5520.713  0.644  0.780  0.380  0.781  0.591  0.479  0.698  0.216  0.496]Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.536, per category = [ 0.660  0.353  0.531  0.537  0.822  0.799  0.812  0.481  0.303  0.3120.802  0.742  0.564  0.315  0.447  0.836  0.778  0.730  0.664  0.7060.790  0.833  0.841  0.791  0.199  0.510  0.219  0.462  0.585  0.8600.268  0.515  0.592  0.572  0.416  0.461  0.621  0.500  0.626  0.4880.465  0.547  0.500  0.291  0.291  0.525  0.333  0.298  0.476  0.4260.268  0.302  0.501  0.680  0.615  0.497  0.365  0.536  0.341  0.5270.351  0.729  0.715  0.741  0.775  0.480  0.635  0.446  0.738  0.4120.713  0.417  0.746  0.187  0.634  0.437  0.363  0.579  0.200  0.428]Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.327, per category = [ 0.409  0.223  0.388  0.338  0.704  0.394  0.449  0.238  0.246  0.2670.448  0.346  0.263  0.184  0.315  0.396  0.494  0.351  0.438  0.5310.516  0.681  0.612  0.457  0.206  0.302  0.185  0.324  0.383  0.6660.292  0.332  0.482  0.519  0.410  0.382  0.461  0.315  0.478  0.3260.279  0.333  0.301  0.204  0.244  0.263  0.159  0.095  0.121  0.2270.154  0.204  0.314  0.385  0.423  0.324  0.255  0.131  0.195  0.0290.055  0.069  0.332  0.194  0.546  0.349  0.284  0.288  0.250  0.1130.532  0.296  0.800  0.164  0.459  0.275  0.115  0.176  0.131  0.309]Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.524, per category = [ 0.675  0.427  0.637  0.456  0.735  0.578  0.348  0.455  0.370  0.5120.722  0.729  0.459  0.263  0.619  0.763  0.726  0.645  0.647  0.6750.661  0.781  0.722  0.770  0.189  0.514  0.288  0.554  0.510  0.8170.416  0.688  0.806  0.556  0.465  0.503  0.693  0.537  0.638  0.5880.589  0.620  0.629  0.456  0.354  0.517  0.333  0.441  0.276  0.4330.303  0.359  0.599  0.511  0.614  0.505  0.387  0.382  0.372  0.1970.199  0.573  0.608  0.573  0.752  0.561  0.583  0.545  0.614  0.3250.538  0.484  0.415  0.292  0.678  0.490  0.465  0.496  0.279  0.403]Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.630, per category = [ 0.796  0.650  0.734  0.659  0.784  0.864  0.767  0.572  0.507  0.6130.856  0.961  0.780  0.492  0.817  0.813  0.760  0.809  0.720  0.7790.789  0.810  0.849  0.778  0.274  0.621  0.155  0.701  0.742  0.8940.221  0.541  0.686  0.421  0.027  0.583  0.548  0.664  0.575  0.6970.789  0.729  0.594  0.423  0.440  0.639  0.543  0.438  0.576  0.6010.285  0.342  0.603  0.732  0.817  0.539  0.484  0.563  0.324  0.5540.470  0.734  0.748  0.807  0.802  0.634  0.684  0.692  0.783  0.4900.824  0.485  0.740  0.401  0.619  0.650  0.535  0.704  0.482  0.830]Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.379, per category = [ 0.205  0.289  0.192  0.299  0.583  0.562  0.668  0.396  0.158  0.1460.680  0.719  0.427  0.290  0.215  0.769  0.664  0.400  0.141  0.1920.294  0.589  0.279  0.386  0.253  0.283  0.252  0.348  0.231  0.6150.243  0.446  0.450  0.196  0.387  0.388  0.527  0.360  0.502  0.2540.208  0.314  0.441  0.276  0.292  0.352  0.148  0.159  0.382  0.1740.110  0.111  0.262  0.429  0.149  0.273  0.188  0.522  0.271  0.5960.425  0.604  0.555  0.614  0.609  0.310  0.515  0.443  0.704  0.4440.722  0.440  0.606  0.090  0.483  0.310  0.450  0.382  0.409  0.304]Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.651, per category = [ 0.613  0.509  0.588  0.606  0.830  0.811  0.832  0.705  0.454  0.4590.819  0.816  0.725  0.508  0.445  0.902  0.861  0.738  0.608  0.6420.765  0.894  0.784  0.800  0.506  0.602  0.503  0.540  0.597  0.8130.481  0.633  0.605  0.557  0.608  0.564  0.699  0.599  0.729  0.5740.568  0.649  0.680  0.522  0.561  0.701  0.434  0.493  0.751  0.5310.417  0.435  0.634  0.725  0.577  0.577  0.512  0.789  0.577  0.7930.652  0.813  0.790  0.800  0.756  0.619  0.779  0.650  0.827  0.6650.822  0.666  0.814  0.299  0.743  0.628  0.639  0.704  0.600  0.570]Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.727, per category = [ 0.735  0.599  0.682  0.704  0.877  0.837  0.865  0.791  0.604  0.5370.824  0.820  0.792  0.612  0.599  0.909  0.869  0.809  0.766  0.7920.871  0.904  0.865  0.857  0.590  0.718  0.587  0.597  0.721  0.8230.590  0.686  0.650  0.700  0.695  0.596  0.739  0.666  0.759  0.6820.643  0.734  0.718  0.592  0.624  0.767  0.659  0.640  0.792  0.6940.626  0.609  0.742  0.792  0.748  0.733  0.658  0.848  0.651  0.8450.718  0.857  0.803  0.832  0.759  0.682  0.783  0.672  0.827  0.7060.822  0.707  0.850  0.526  0.764  0.709  0.650  0.769  0.709  0.607]Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.563, per category = [ 0.575  0.433  0.587  0.553  0.777  0.550  0.675  0.662  0.490  0.4910.648  0.644  0.619  0.435  0.486  0.625  0.616  0.627  0.630  0.6780.753  0.840  0.717  0.677  0.522  0.532  0.483  0.475  0.561  0.7520.510  0.542  0.612  0.648  0.609  0.531  0.597  0.524  0.644  0.5940.516  0.611  0.574  0.502  0.517  0.592  0.490  0.460  0.372  0.5200.431  0.492  0.536  0.581  0.631  0.544  0.518  0.344  0.491  0.7000.305  0.386  0.533  0.565  0.660  0.619  0.394  0.534  0.525  0.3400.900  0.502  0.800  0.449  0.666  0.565  0.362  0.428  0.600  0.556]Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.767, per category = [ 0.800  0.687  0.812  0.684  0.879  0.768  0.656  0.795  0.663  0.7100.823  0.833  0.762  0.650  0.799  0.832  0.868  0.793  0.791  0.8300.821  0.846  0.838  0.831  0.686  0.750  0.728  0.757  0.747  0.9200.805  0.904  0.933  0.815  0.808  0.710  0.838  0.727  0.802  0.8050.764  0.836  0.829  0.761  0.834  0.790  0.682  0.744  0.754  0.7370.632  0.705  0.800  0.759  0.801  0.756  0.708  0.759  0.688  0.4640.598  0.768  0.786  0.734  0.845  0.853  0.782  0.809  0.824  0.6350.760  0.751  0.750  0.721  0.837  0.785  0.767  0.739  0.633  0.661]Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.883, per category = [ 0.900  0.852  0.919  0.825  0.919  0.933  0.892  0.899  0.867  0.8680.932  0.985  0.939  0.815  0.933  0.934  0.905  0.916  0.889  0.9310.920  0.925  0.945  0.924  0.650  0.905  0.790  0.905  0.882  0.9380.975  0.780  0.757  0.814  0.800  0.633  0.900  0.879  0.958  0.9170.929  0.908  0.932  0.838  0.857  0.922  0.881  0.887  0.910  0.8940.769  0.762  0.900  0.882  0.952  0.878  0.882  0.897  0.813  0.8820.885  0.917  0.890  0.933  0.922  0.893  0.907  0.939  0.900  0.7950.900  0.848  0.879  0.832  0.864  0.916  0.843  0.914  0.967  0.900]
http://www.yayakq.cn/news/793538/

相关文章:

  • 自己做的网站只能打开一个链接企业网络安全方案
  • app外包网站西宁市企业建站专业
  • 扬州 网站 建设企业网站建设作品分析
  • 变更网站备案信息wordpress 页面简码
  • 中石油网站建设自己搭建聊天平台
  • seo快速建站上海缪斯设计公司的主题文化
  • 网络哪里能接活做网站广宁城乡建设网站
  • 阳明拍卖公司网站邯郸市博物馆
  • 河南网站建设yijucewordpress模板 物流
  • 荆州网站建设 松滋网站建设企业服务官网
  • 帮熟人做网站如何收费wordpress开发小程序
  • 三网合一企业网站php服装商城网站建设
  • 福建得兴建设工程网站印象笔记配置到wordpress
  • 荆轲网络做网站html简单网页设计作品
  • php做的直播网站广告设计教程
  • 聚成网站建设深圳哪里网站制作
  • 免费背景图片素材网站怎么创建公众号赚钱
  • 网站域名注册地址成都网站建设是什么
  • 新野企业网站建设腾讯空间个人认证 企业认证 网站认证哪种功能用途最齐全??
  • 电子商务网站商品怎么来兰州做it网站运营的怎么样
  • 新wordpress仿站企业营销策划服务
  • 在线网站网上营销培训课程
  • 东莞网站推广的公司wordpress 分类标题
  • 想做个网站 怎么做的西宁做网站君博先进
  • 昭通微网站建设深圳商业网站建设怎么样
  • 网站模板拍卖wordpress审计
  • 网站建设免费视频教程宁波建设网 公积金缴存提取网点
  • 吉林建设教育协会网站辽宁省建设工程信息网上不去
  • 用自己电脑配置服务器做网站几百块做网站
  • 网站ui设计例子虚拟主机购买哪里好