当前位置: 首页 > news >正文

餐饮手机网站建设超变攻速传奇一秒20刀

餐饮手机网站建设,超变攻速传奇一秒20刀,网站怎么做伪静态iis7.0,做响应式网站设计师如何布局呢往期精彩内容: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 Python轴承故障诊断入门教学-CSDN博客 Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客 Python轴承故障诊断 (14)高创新故障识别模型-CSDN…

 往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断入门教学-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

注意:本模型继续加入 轴承故障诊断—创新模型全家桶 ,之前购买的同学请及时更新下载!

环境:python 3.9  pytorch 1.8 以上

分类精度:训练集、验证集、测试集均为98%

全网最低价,创新网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越, 精度高。创新度也有!!!高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!

基于VMD-CNN-BiTCN的轴承故障诊断创新模型:

1.创新点:

    利用VMD将原始信号分解为多个模态分量,来提取信号的频域特征和时域特征;CNN 可以用于提取信号的局部空间特征并通过CNN卷积池化层降低信号序列长度,增加数据维度;BiTCN 是一种双向时序卷积网络,可以有效地捕获信号的时序信息。双向结构有助于模型捕获信号的动态特征;

   

2. 原理流程:

   首先,使用 VMD 对原始轴承信号进行分解,得到多个模态分量;每个模态分量作为输入,经过 CNN 进行特征提取和抽象;CNN 提取的特征再经过 BiTCN 进行时序建模和特征融合;最终,利用融合后的特征进行轴承故障的诊断和分类;通过结合两种模型,创新模型可以在轴承故障诊断任务中取得更好的性能和效果,提高故障诊断的准确率和效率。

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现VMD-CNN-BiTCN模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集-CSDN博客

1 轴承数据加载与预处理

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

1.2 故障VMD分解可视化

第一步, 模态选取

根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,故障VMD分解可视化


1.3 故障数据的VMD分解预处理

2 基于Pytorch的VMD-CNN-BiTCN创新诊断模型

2.1 定义VMD-CNN-BiTCN分类网络模型

2.2 设置参数,训练模型

100个epoch,准确率98%,VMD-CNN-BiTCN网络分类效果显著,CNN-BiTCN模型能够充分提取轴承故障信号的多尺度特征,收敛速度快,性能特别优越,效果明显。

注意调整参数:

  • 可以适当增加CNN层数和每层维度数,微调学习率;

  • 微调BiTCN层数和每层通道数个数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

2.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#代码和数据集:https://mbd.pub/o/bread/ZpWWlZpy

http://www.yayakq.cn/news/572000/

相关文章:

  • seo查询 站长工具公益基金会网站开发的背景
  • 北京网站推广公司排名网站建设去哪里找客户
  • 徐州网站建设推广wordpress大气
  • 店铺推广软文案例seo网站建设步骤
  • 博客网站代码响应式网页设计与制作
  • 做网站 做手机app要学什么软件沈阳网站建设制作公司
  • 提供网站建设课程代码wordpress论坛插件
  • 学做网站应该看那些书网站的备案在哪备案吗
  • 自己公司产品网站的好处花都区建设工程造价管理网站
  • 网站建设网站建设的网络公司纹理网站推荐
  • 自己做网站服务器多少钱网站建设叁金手指花总1
  • 万网官方网站南昌专门做网站的人
  • 山东省建筑施工企业安全生产管理网站关键词seo怎么做
  • 网站建设排序题石家庄网站定制开发
  • 平面设计做画册用网站1688官网登录入口
  • 网站建设维护合同范本联盟平台
  • 展览会建设网站平台的作用房产公司网站建设
  • 企业平台网站建设有人做网站吗
  • 网站建设app开发公司网站被iframe
  • php网站忘记后台密码wordpress归档页面模板
  • 整容医院网站建设目的做网站切图尺寸
  • 如何申请免费的网站空间国家军事网
  • 有哪些网站建设工作求职网站开发多少钱
  • 网站 优化 分析江苏新站优化
  • 电子商务基础平台有哪些seo短视频发布页
  • 电商网站建设比较好的苏中建设是哪里的
  • 无投入网站推广包头网站建设易通
  • dy刷粉网站推广马上刷视频剪辑教程自学
  • 阿帕奇网站搭建怎样建网站 步骤
  • 国内外公司网站差异打开百度网站首页