当前位置: 首页 > news >正文

电子商务网站开发方式免费短网址生成器

电子商务网站开发方式,免费短网址生成器,建网站哪家最好,wordpress 主题放哪文章目录约束优化:约束优化的三种序列无约束优化方法(罚函数法)外点罚函数法L2-罚函数法:非精确算法对于等式约束对于不等式约束L1-罚函数法:精确算法内点罚函数法:障碍函数法参考文献约束优化:…

文章目录

  • 约束优化:约束优化的三种序列无约束优化方法(罚函数法)
    • 外点罚函数法
      • L2-罚函数法:非精确算法
        • 对于等式约束
        • 对于不等式约束
      • L1-罚函数法:精确算法
    • 内点罚函数法:障碍函数法
    • 参考文献

约束优化:约束优化的三种序列无约束优化方法(罚函数法)

罚函数法是指将约束作为惩罚项加到目标函数中,从而转化成熟悉的无约束优化问题。

外点罚函数法

简而言之,外点罚函数法是指对于可行域外的点,惩罚项为正,即对该点进行惩罚;对于可行域内的点,惩罚项为0,即不做任何惩罚。因此,该算法在迭代过程中点列一般处于可行域之外,惩罚项会促使无约束优化问题的解落在可行域内。罚函数一般由约束部分乘正系数组成,通过增大该系数,我们可以更严厉地惩罚违反约束的行为,从而迫使惩罚函数的最小值更接近约束问题的可行区域。

L2-罚函数法:非精确算法

对于等式约束

在这里插入图片描述 在这里插入图片描述

对于不等式约束

在这里插入图片描述 在这里插入图片描述

对于一般优化问题,则是将上述不等式约束和等式约束的惩罚项加到一起。

在这里插入图片描述

什么情况下使用L2-罚函数法?

  • 实际优化问题中,等式与不等式约束具有物理意义;
  • 约束违背量不要求特别小,在1e-2~1e-3之间可接受就行。例如某优化问题中速度约束v≤10v \leq 10v10,解v=10.01v=10.01v=10.01也可以接受。

使用该方法时,可采用如下两种方式:

  • 一步到位,即取σ\sigmaσ足够大,直接解无约束罚函数P最优化问题,此时P最优解是个近似解,与实际最优解之间的误差在可接受范围内;
  • 序列迭代优化,例如:

σ=1⟹P(x,1)\sigma=1 \implies P(x,1)σ=1P(x,1),解x1∗=x1x^{*}_{1}=x_1x1=x1;

σ=10⟹P(x,10)\sigma=10 \implies P(x,10)σ=10P(x,10),上一次迭代x1x_1x1作初值解x2∗=x2x^{*}_{2}=x_2x2=x2;

σ=100⟹P(x,100)\sigma=100 \implies P(x,100)σ=100P(x,100),上一次迭代x2x_2x2作初值解x3∗=x3x^{*}_{3}=x_3x3=x3;

​ ……直到达到收敛准则。算法伪代码如下:

在这里插入图片描述

一般情况下,具体选择何种方式取决于实际工程问题的精度需求和速度需求。

L2-罚函数法的优缺点?

优点:

  • 将约束优化问题转化为无约束优化问题,当ci(x)c_i(x)ci(x)光滑时可以调用一般的无约束光滑优化问题算法求解;
  • 二次罚函数形式简洁直观而在实际中广泛使用。

缺点:

  • 需要σ→∞\sigma \rightarrow \inftyσ,此时海瑟矩阵条件数过大,对于无约束优化问题的数值方法拟牛顿法与共轭梯度法存在数值困难,且需要多次迭代求解子问题;
  • 对于存在不等式约束的P(x,σ)P(x,\sigma)P(x,σ)可能不存在二次可微性质,光滑性降低;
  • 不精确,与原问题最优解存在距离。

例子:

在这里插入图片描述 在这里插入图片描述

L1-罚函数法:精确算法

由于L2-罚函数法存在数值困难,并且与原问题的解存在误差,因此考虑精确罚函数法。精确罚函数是一种问题求解时不需要令罚因子趋于正无穷(或零)的罚函数。换句话说,若罚因子选取适当,对罚函数进行极小化得到的解恰好就是原问题的精确解。这个性质在设计算法时非常有用,使用精确罚函数的算法通常会有比较好的性质。

由于L1-罚函数非光滑,因此无约束优化问题P的收敛速度无法保证,这实际上就相当于用牺牲收敛速度的方式来换取优化问题P的精确最优解。

在这里插入图片描述

内点罚函数法:障碍函数法

前面介绍的L1和L2罚函数均属于外点罚函数,即在求解过程中允许自变量xxx位于原问题可行域之外,当罚因子趋于无穷时,子问题最优解序列从可行域外部逼近最优解。自然地,如果我们想要使得子问题最优解序列从可行域内部逼近最优解,则需要构造内点罚函数。顾名思义,内点罚函数在迭代时始终要求自变量xxx不能违反约束,因此它主要用于不等式约束优化问题

如下图所示,考虑含不等式约束的优化问题,为了使迭代点始终在可行域内,当迭代点趋于可行域边界时,我们需要罚函数趋于正无穷。常见的罚函数有三种:对数罚函数,逆罚函数和指数罚函数。对于原问题,它的最优解通常位于可行域边界,即ci(x)≤0c_i(x) \leq 0ci(x)0中至少有一个取到等号,此时需要调整惩罚因子σ\sigmaσ使其趋于0,这会减弱障碍罚函数在边界附近的惩罚效果。

在这里插入图片描述

算法伪代码如下:

在这里插入图片描述

同样地,内点罚函数法也会有类似外点罚函数法的数值困难,即当σ\sigmaσ趋于0时,子问题P(x,σ)P(x,\sigma)P(x,σ)的海瑟矩阵条件数会趋于无穷,因此对子问题的求解将会越来越困难。

在这里插入图片描述

参考文献

机器人中的数值优化

最优化:建模、算法与理论/最优化计算方法

http://www.yayakq.cn/news/83934/

相关文章:

  • 自己怎么做电影网站可以赚钱吗如何整理做网站的素材
  • 网站优化和推广方案pptdjango做网站怎样
  • 邵阳市 网站建设哪个网站是用vue做的
  • 网站建设倒计时单页源码动画设计参考文献
  • 做网站如何防止被抄袭微信如何进入公众号
  • ps做网站图片水印阿里邮箱登录
  • 凡科网站代理登录入口百度导航
  • 网站开发职能城乡和住房建设部证书信息网
  • 网站怎么做404页面的跳转无线网址域名注册
  • 深圳住房与建设网站网络编程学校
  • 深圳专业网站制作费用淘宝是什么语言做的网站
  • 专做外贸库存的网站上海企业网站推广方法
  • 百度收录网站之后又怎么做企业网站备案策划
  • 网站开发近期市场浙江省建设厅网站在哪里
  • 网站建设视频教程最新网站seo网络优化公司
  • 什么是网站建设技术新品牌推广方案
  • 上海营销型网站代理随机网站生成器
  • 电子厂网站建设方案书怎么写wordpress中文插件seo百度
  • 电商网站模板下载wordpress发送页面失败
  • 镇平县两学一做网站买域名要多少钱一个
  • 蓝色商务网站模板学校网站怎么做的好
  • 给公司做网站要多少钱俄乌今天最新军事动态
  • 找设计网站公司ppt模板免费下载 素材第一ppt
  • 响应式网站和自适应网站南宁本地网站
  • 网站建设蛋蛋28建设工程公司组织架构图
  • 蜂蜜做的好网站或案例北京企业官网建设
  • 野狼seo团队钦州seo
  • 织梦网站怎么修改内容网站定制 动易
  • 51自学网官网入口东莞seo排名收费
  • asp网站密码做物流的网站都有什么风险