当前位置: 首页 > news >正文

做视频网站 服务器配置动易网站制作教程

做视频网站 服务器配置,动易网站制作教程,长沙网站开发公,更改wordpress所有的链接地址SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时&#xff…

SMO算法(Sequential Minimal Optimization) 是一种用于求解 支持向量机(SVM) 二次规划对偶问题的优化算法。它由 John Platt 在 1998 年提出,目的是快速解决 SVM 的优化问题,特别是当数据集较大时,传统的二次规划方法效率较低,而 SMO 算法通过分解问题,使得计算变得更加高效。

SVM 的二次规划问题回顾

支持向量机的优化问题本质上是一个 凸二次规划问题,其目标是找到最优的超平面,使得样本点的分类间隔最大。具体来说,SVM 的对偶问题形式为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i αmin21i=1Nj=1NαiαjyiyjK(xi,xj)i=1Nαi

s.t. ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ C \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C s.t.i=1Nαiyi=0,0αiC

其中:

  • α i \alpha_i αi 是拉格朗日乘子。
  • y i y_i yi 是样本点 x i x_i xi 的类别标签。
  • K ( x i , x j ) K(x_i, x_j) K(xi,xj) 是核函数,表示样本之间的相似性。
  • C C C 是惩罚参数。

这个问题涉及到对所有 N N N 个拉格朗日乘子 α \alpha α 进行优化,传统的优化算法如 内点法QP(Quadratic Programming) 方法在处理大规模问题时效率较低。

SMO 算法的基本思想

SMO 算法通过将原始的优化问题分解为多个 子问题 来求解,每次仅优化两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2,其余乘子保持不变。优化两个变量的子问题可以通过简单的解析方法快速求解,从而大大减少了计算的复杂度。

SMO算法的步骤:
  1. 选择两个拉格朗日乘子
    SMO算法每次选择两个拉格朗日乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 进行优化。选择这两个乘子的原则是,它们不满足 KKT条件,即当前的解不是最优的。

  2. 构建子优化问题
    假设所有其他拉格朗日乘子保持不变,SMO通过优化两个乘子 α 1 \alpha_1 α1 α 2 \alpha_2 α2 来最小化目标函数。优化问题变成了一个关于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 的二次函数,且由于存在约束 ∑ i = 1 N α i y i = 0 \sum_{i=1}^{N} \alpha_i y_i = 0 i=1Nαiyi=0,因此这两个变量之间有一个线性关系。

  3. 更新两个拉格朗日乘子的值
    SMO 通过解析的方法计算出新的 α 1 \alpha_1 α1 α 2 \alpha_2 α2 值,并根据边界 [ 0 , C ] [0, C] [0,C] 进行截断。计算后的两个新的乘子必须满足所有约束条件。

  4. 更新偏置项 b b b
    每次更新两个拉格朗日乘子后,SMO 需要更新支持向量机中的偏置项 b b b,以保证分类超平面保持正确。

  5. 迭代重复
    SMO 通过不断重复选择一对拉格朗日乘子进行优化,直到所有的乘子都满足 KKT 条件,即算法收敛。

SMO 算法的核心优化过程

SMO 算法的核心在于,它将每次优化问题简化为一个涉及两个变量的二次规划问题。假设我们要优化 α 1 \alpha_1 α1 α 2 \alpha_2 α2,我们可以通过以下步骤来求解:

  1. 计算未约束解:根据优化目标函数,我们可以直接计算出未约束的 α 2 new, unc \alpha_2^{\text{new, unc}} α2new, unc,即不考虑任何约束时最优的 α 2 \alpha_2 α2 值。

α 2 new, unc = α 2 old + y 2 ⋅ E 1 − E 2 K 11 + K 22 − 2 K 12 \alpha_2^{\text{new, unc}} = \alpha_2^{\text{old}} + y_2 \cdot \frac{E_1 - E_2}{K_{11} + K_{22} - 2K_{12}} α2new, unc=α2old+y2K11+K222K12E1E2

其中 E 1 E_1 E1 E 2 E_2 E2 是预测误差, K 11 K_{11} K11 K 22 K_{22} K22 K 12 K_{12} K12 是核函数的值。

  1. α 2 \alpha_2 α2 进行截断:未约束的 α 2 \alpha_2 α2 值可能不满足约束 0 ≤ α 2 ≤ C 0 \leq \alpha_2 \leq C 0α2C,因此需要将其截断为一个满足约束条件的值。

  2. 更新 α 1 \alpha_1 α1:由于 α 1 \alpha_1 α1 α 2 \alpha_2 α2 之间有线性约束关系,更新 α 2 \alpha_2 α2 后可以直接更新 α 1 \alpha_1 α1

  3. 更新偏置项 b b b:每次更新 α 1 \alpha_1 α1 α 2 \alpha_2 α2 后,需要更新偏置项 b b b,以保证分类超平面的正确性。

SMO 算法的优势

  1. 局部优化效率高:每次只需要优化两个变量,计算非常快。通过反复优化不同的拉格朗日乘子对,SMO 可以快速逼近最优解。

  2. 避免矩阵操作:传统的二次规划方法通常需要对大矩阵进行操作,而 SMO 通过只处理两个变量,避免了对整个矩阵的求解,减少了计算复杂度。

  3. 适用于大规模问题:SMO 算法能够很好地处理大规模的数据集,尤其是当样本数量很大时,传统方法难以处理的问题,SMO 也能有效求解。

SMO 算法的局限

  • 选择变量的策略:SMO 的效率在很大程度上取决于选择哪两个乘子来进行优化。如果选择策略不好,算法可能收敛较慢。
  • 对初始点敏感:SMO 对初始值的选择较为敏感,不同的初始值可能导致不同的收敛速度。

总结

SMO 是一种非常有效的算法,特别适合用于大规模支持向量机的训练。通过不断地优化两个拉格朗日乘子,它极大地简化了支持向量机的二次规划问题。由于每次只处理两个变量,SMO 避免了传统方法中的矩阵运算,因此能够处理较大的数据集并且计算速度很快。

http://www.yayakq.cn/news/463073/

相关文章:

  • 做单屏网站 高度是多少asp.net手机网站开发
  • 长春网站建设那家好网站开发电话
  • 建立企业网站公司网站建设推广价格
  • 国际贸易网站建设郑州企业的网站建设
  • 仿淘宝网站源码 asp避免视觉效果混淆
  • 郑州网站制作的公司哪家好WordPress 先登录
  • 网站关于 模板学网站建设的学校
  • 做网站买个域名多少钱杭州化妆品网站建设
  • 做相册的网站 网易学校网站建设客户需求调查问卷
  • 做营销的网站推广不懂网站怎么做平台
  • 模板建网站多少钱网站到期忘记续费
  • 东盟建设集团重庆工程有限公司网站网站运营 网站建设
  • wordpress只在首页设置关键词搜索引擎优化不包括
  • 深圳富通做网站广东省建设八大员网站
  • 商务网站建设的调研长沙市招聘网
  • 手机交互设计网站房产信息官网查询
  • 来返苏州人员信息登记平台seo优化推广业务员招聘
  • 网站建设要后台吗国外优秀人像摄影网站
  • seo优化网站词室内设计师证报名入口官网
  • 网站建设工作室怎么开京东的网络营销方式
  • 上海公司网站设黑豹站群系统
  • 国外设计师作品网站沈阳恢复营业通知
  • 网站开发过程文档我开网店一天亏几百
  • 网站后台编辑框无法显示中国教育网站官网
  • 用哪个网站做首页好wordpress菜单链接
  • 静态网站开发软件wordpress开启菜单
  • 如何用网站做淘宝联盟彩票网站为啥链接做两次跳转
  • 茶庄网站模板网站规划和建设的步骤
  • wordpress 淘宝客网站用来查数据的网站怎么建设
  • 做签名照的网站中国纪检监察报单国平