当前位置: 首页 > news >正文

网站建设鑫科技深圳网页搜索排名提升

网站建设鑫科技,深圳网页搜索排名提升,seo怎么收费seo,中山短视频seo教程文章目录 1. 并查集介绍2. 并查集的实现2.1 实现逻辑2.2 isSameSet方法2.3 union方法(小挂大优化)2.4 find方法(路径压缩优化) 3. 并查集模板4. 并查集习题4.1 情侣牵手4.2 相似字符串组 1. 并查集介绍 定义: 并查集是一种树型的数据结构,用于处理一些不…

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板
    • 4. 并查集习题
      • 4.1 情侣牵手
      • 4.2 相似字符串组

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

4. 并查集习题

4.1 情侣牵手

leetcode765.情侣牵手题目链接
在这里插入图片描述

//本题的前置知识可能是置换环(这一题的并查集的思路尤其不好想)
class Solution {
//核心点的分析就是如果一个集合里面有k对情侣, 那么我们至少需要交换 k - 1 次private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];private static int sets = 0;//初始化并查集private static void build(int n){sets = n;for (int i = 0; i < n; i++) {father[i] = i;size[i] = 1;}}//find方法(路径压缩的实现)//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}public int minSwapsCouples(int[] row) {int cpN = row.length / 2;build(cpN);for(int i = 0; i < row.length; i += 2){union(row[i] / 2, row[i + 1] / 2);}return cpN - sets;}
}

4.2 相似字符串组

leetcode839.相似字符串组
在这里插入图片描述

//简单的并查集的应用
class Solution {private static final int MAXN = 301;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int sets = 0;//初始化并查集的方式private static void build(int n){sets = n;for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}}//find方法private static int find(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//isSameSet方法 private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){size[fa] += size[fb];father[fb] = fa;}else{size[fb] += size[fa];father[fa] = fb;}}}public int numSimilarGroups(String[] strs) {int n = strs.length;int m = strs[0].length();build(n);for(int i = 0; i < n; i++){for(int j = i + 1; j < n; j++){if (find(i) != find(j)) {int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (strs[i].charAt(k) != strs[j].charAt(k)) {diff++;}}if (diff == 0 || diff == 2) {union(i, j);}}}}return sets;}
}
http://www.yayakq.cn/news/426712/

相关文章:

  • 面试网站开发员好看的网站颜色
  • 合肥做网站设计国内外画画做的好网站
  • WordPress建站可以吗海洋优质的网站建设
  • 网站情况建设说明书盗版电影网站建设成本
  • 做网站整理信息的表格宁波建网站报价
  • 怎么做自己的优惠淘网站好玩的传奇手游
  • 网站运营有前途吗西安城乡住房建设厅网站首页
  • vps服务器中的网站不显示图片深圳市建设工程交易服务中心网
  • 网站建设免费代理互联网网站开发的未来方向
  • 上海的公司地址有哪些seo费用
  • 获取网站访客qq号码代码定制网站开发接私活
  • 湛江网站设计软件模板式网站建设
  • 珠海公司网站制作公网站建设优化推广哈尔滨
  • 编程教学入门教程windows优化大师兑换码
  • 经典网站模板下载小型网上商城系统
  • 网站常规后台查公司的口碑和评价的网站
  • 西安招聘网站保定网站建设找谁
  • 外贸网站建设报价差别那么大花钱多吃亏工业设计是冷门专业吗
  • 移动网站设计哈尔滨网站建设效果好
  • 自己的电脑做网站服务器 买的服务器 速度婚庆一条龙价目表
  • 如室设计网站郑州汉狮做网站报价
  • jquery在网站开发实例运用西安网站托管哪家好
  • 公司培训网站需要广播证吗泰州网站设计哪家好
  • 那个网站有免费的模板有名的app开发公司
  • 北碚网站建设哪家好中国建设工程协会标准网站
  • 网站建设与用户体验网站建设费要交印花税吗
  • 现在推广网站最好的方式网站自动答题脚本怎么做
  • 网站建设 公司排名wordpress 图片搜索
  • php网站开发技术论文视频直播技术
  • 南昌企业网站开发公司微信公众平台小程序怎么制作