当前位置: 首页 > news >正文

网站备案 接入商备案正规的推文平台

网站备案 接入商备案,正规的推文平台,上海 宝安网站建设 网络服务,jquery网站目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统: 2. IDE: 3. python: 4. 库: 三、实验内容 实验前的猜想: 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果(以…

 

目录

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

2. IDE:

3. python:

4. 库:

三、实验内容

实验前的猜想:

四、实验结果

1. 数据预处理及数据划分

独热编码处理结果(以地区为例)

2. 模型训练

3. 绘制初始决策树

4. 模型评价

5. 模型优化

绘制优化后的决策树

6. 修改样本、网格搜索参数进一步优化模型

五、实验分析


 

 

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

        Windows 11 Home

2. IDE:

        PyCharm 2022.3.1 (Professional Edition)

3. python

        3.8.0

4. 库:

numpy

1.20.0

 

matplotlib

3.7.1

 

pandas

1.1.5

 

scikit-learn

0.24.2

 

 

conda create -n ML python==3.8 pandas scikit-learn numpy matplotlib

三、实验内容

        本次实验使用决策树模型进行建模,实现对车险 数据的分析,车险数据为如下MTPLdata.csv数据集:

f2dccf851f8245909e63b5e927fd0e01.png

        该车险数据集包含了50万个样本,每个样本有8个特征和1个标签。其中,标签是一个二元变量,值为0或1,表示车主是否报告过车险索赔(clm,int64);特征包括车主的年龄(age,int64),车辆的年限(ac,int64)、功率(power,int64)、燃料类型(gas,object)、品牌(brand,object),车主所在地区(area,object)、居住地车辆密度(dens,int64)、以及汽车牌照类型(ct,object)。

实验前的猜想

        详见实验报告

四、实验结果

1. 数据预处理及数据划分

        将数据读入并进行数据预处理,包括哑变量处理和划分训练集和测试集

MTPLdata = pd.read_csv('MTPLdata.csv')
# 哑变量处理-独热编码
# 将clm列的数据类型转换为字符串
MTPLdata['clm'] = MTPLdata['clm'].map(str)
# 选择包括第1、2、3、4、5、6、7、8列的数据作为特征输入
# ac、brand、age、gas、power
X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4]]
# X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7]]
# 对X进行独热编码
X = pd.get_dummies(X_raw)
# 选择第9列作为标签y
y = MTPLdata.iloc[:, 8]# 将数据划分为训练集和测试集,测试集占总数据的20%
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=1)

 

独热编码处理结果(以地区为例)

bca076c069c04a629d08ec60ca4b6d9d.png

2. 模型训练

        我们使用决策树分类器模型进行训练(设定树的最大深度为2,使用平衡的类权重,并默认使用基尼系数检验准确度)。

model = DecisionTreeClassifier(max_depth=2, class_weight='balanced', random_state=123)
model.fit(X_train, y_train)     # 数据拟合
model.score(X_test, y_test)     # 在测试集上评估模型

3. 绘制初始决策树

        为了更好地解读决策树模型,调用plot_tree函数绘制决策树。

plt.figure(figsize=(11, 11))
plot_tree(model, feature_names=X.columns, node_ids=True, rounded=True, precision=2)
plt.show()

e3ef80d6c242491193ea5a23b4866f78.png

 

4. 模型评价

pred = model.predict(X_test)
table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
# table# 计算模型的准确率、错误率、召回率、特异度和查准率
table = np.array(table)  # 将pandas DataFrame转换为numpy array
Accuracy = (table[0, 0] + table[1, 1]) / np.sum(table)      # 准确率
Error_rate = 1 - Accuracy  # 错误率
Sensitivity = table[1, 1] / (table[1, 0] + table[1, 1])     # 召回率
Specificity = table[0, 0] / (table[0, 0] + table[0, 1])     # 特异度
Recall = table[1, 1] / (table[0, 1] + table[1, 1])          # 查准率

5. 模型优化

        为了寻找更优的模型,我们使用cost_complexity_pruning_path函数计算不同的ccp_alpha对应的决策树的叶子节点总不纯度,并绘制ccp_alpha与总不纯度之间的关系图。

model = DecisionTreeClassifier(class_weight='balanced', random_state=123)
path = model.cost_complexity_pruning_path(X_train, y_train)
plt.plot(path.ccp_alphas, path.impurities, marker='o', drawstyle='steps-post')
plt.xlabel('alpha (cost-complexity parameter)')
plt.ylabel('Total Leaf Impurities')
plt.title('Total Leaf Impurities vs alpha for Training Set')
plt.show()

                                        1w样本                                                             50w样本

74fe13bc704a4a1c9f27b316cd7fd8c6.png

         接着,我们通过交叉验证选择最优的ccp_alpha,并使用最优的ccp_alpha重新训练模型。

 

绘制优化后的决策树

rangeccpalpha = np.linspace(0.000001, 0.0001, 10, endpoint=True)
param_grid = {'max_depth':  np.arange(3, 7, 1),# 'ccp_alpha': rangeccpalpha,'min_samples_leaf': np.arange(1, 5, 1)
}
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
model = GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state=123),param_grid, cv=kfold)
model.fit(X_train, y_train)

8a1af918529548a9b3d2294700c4d59d.png

 

此外,还计算了各个特征的重要性,并绘制了特征重要性图。

plt.figure(figsize=(20, 20))
sorted_index = model.feature_importances_.argsort()
plt.barh(range(X_train.shape[1]), model.feature_importances_[sorted_index])
plt.yticks(np.arange(X_train.shape[1]), X_train.columns[sorted_index])
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.title('Decision Tree')
plt.tight_layout()
plt.show()

d24a68bc5d2242bd9b054d558b1c8567.png

6. 修改样本、网格搜索参数进一步优化模型

 

   详见实验报告

 

五、实验分析

        请下载本实验对应的代码及实验报告资源(其中实验分析部分共2页、1162字)

      

 

http://www.yayakq.cn/news/717428/

相关文章:

  • 检测网站打开速度广州网站设计工作室
  • 网站建设协议合同范本田园综合体建设网站
  • 微信公众号功能开发常州网站搜索优化
  • 优质网站建设制作旅行社手机网站建设成
  • 淮阳住房和城乡建设网站郑州主城区
  • 国外商品网站境外网站在国内做镜像
  • 订制网站建设sae wordpress 图片
  • 商城网站建设预算要多少钱石家庄网站网站建设
  • 专业的丹徒网站建设项目管理流程
  • 虹口网站制作全国公共信息服务平台
  • 东莞中英文网站建设宝安三网合一网站建设
  • 企业网站导航优化佛山网站优化包年
  • 网站搭建模板数据显示网站模板
  • 专业手机网站建设设计网站开发汇报ppt模板
  • 网站路径改版如何做301重定向无锡哪里有网站建设便宜些的
  • 湖南城市建设职业技术学院官方网站兰州市建设厅网站
  • 图片类网站开发需求做网站维护有前途吗
  • 安徽专业网站建设检修常州做的网站的公司网站
  • 做菠菜网站判多久wordpress嵌入百度地图
  • 成都网站开发培训大数据培训
  • 网站备案需要什么流程百度可以做网站吗
  • 房地产开发公司网站网站建设跟版网
  • 我要自学网官方网站wordpress iframe框架引用插件
  • 怀柔做网站wordpress 4.
  • 建立网站内容需要做的事开发公司管理规章制度
  • 实惠网站建设百度seo搜索引擎优化方案
  • 如何为公司建立网站公司网站制作步骤流程图
  • 青岛如何做网站seoiis做的网站如何添加播放器
  • 贪便宜网站安卓系统
  • 大型的网站建设wordpress注册提示