当前位置: 首页 > news >正文

流行wordpress网站优化和推广方案ppt

流行wordpress,网站优化和推广方案ppt,东莞长安网站开发公司,免费的网站开发软件【大模型基础_毛玉仁】1.1 基于统计方法的语言模型 1.语言模型基础1.1 基于统计方法的语言模型1.1.1 n-grams 语言模型1.1.2 n-grams 的统计学原理 1.语言模型基础 语言是概率的。语言模型(LanguageModels, LMs)旨在准确预测语言符号的概率。 将按照语…

【大模型基础_毛玉仁】1.1 基于统计方法的语言模型

  • 1.语言模型基础
    • 1.1 基于统计方法的语言模型
      • 1.1.1 n-grams 语言模型
      • 1.1.2 n-grams 的统计学原理


1.语言模型基础

语言是概率的。语言模型(LanguageModels, LMs)旨在准确预测语言符号的概率。

将按照语言模型发展的顺序依次讲解:

  • 基于统计方法的n-grams 语言模型;

  • 基于循环神经网络(RecurrentNeuralNetwork,RNN)的语言模型;

  • 基于Transformer的语言模型。


1.1 基于统计方法的语言模型

通过对语料库(Corpus)中的语料进行统计或学习,来获得预测语言符号概率。

n-grams是最具代表性的统计语言模型。 它基于马尔可夫假设和离散变量的极大似然估计给出语言符号的概率。

1.1.1 n-grams 语言模型

n-gram指的是长度为n的词序列。

  • 当n=1时, 称之为unigram

  • 当n=2时,称之为bigrams

  • 当n=3时,称之为trigrams

  • 其他时,称之为“数字-grams”(如:当n=4 时,称之为4-grams)

假设,包含N个元素的语言符号可以表示为 w 1 : N = { w 1 , w 2 , w 3 , . . . , w N } w_{1:N} = \{w_1, w_2, w_3, ..., w_N\} w1:N={w1,w2,w3,...,wN} w 1 : N w_{1:N} w1:N 代表文本。

n-grams语言模型,通过依次统计文本中的n-gram及其对应的(n-1)-gram在语料库中出现的相对频率,来计算文本 w 1 : N w_{1:N} w1:N 出现的概率。计算公式如下所示:

P n -grams ( w 1 : N ) = ∏ i = n N C ( w i − n + 1 : i ) C ( w i − n + 1 : i − 1 ) , (1.1) P_{n\text{-grams}}(w_{1:N}) = \prod_{i=n}^{N} \frac{C(w_{i-n+1:i})}{C(w_{i-n+1:i-1})}, \tag{1.1} Pn-grams(w1:N)=i=nNC(win+1:i1)C(win+1:i),(1.1)

  • C ( w i − n + 1 : i ) C(w_{i−n+1 : i}) C(win+1:i)为词序列 { w i − n + 1 , . . . , w i } \{w_{i−n+1},...,w_i\} {win+1,...,wi}在语料库中出现的次数;

  • C ( w i − n + 1 : i − 1 ) C(w_{{i−n+1}: {i−1}}) C(win+1:i1) 为词序列 { w i − n + 1 , . . . , w i − 1 } \{w_{i−n+1},...,w_{i−1}\} {win+1,...,wi1}在语料库中出现的次数。

bigrams语言模型的例子:

图1.1: n-grams 示例语料库。
在这里插入图片描述

假设语料库如图1.1所示,应用bigrams 对文本“长颈鹿脖子长”(其由{长颈鹿,脖子,长}三个词构成)出现的概率进行计算,如下式所示:

P bigrams ( 长颈鹿, 脖子, 长 ) = C ( 长颈鹿, 脖子 ) ⋅ C ( 脖子, 长 ) C ( 长颈鹿 ) ⋅ C ( 脖子 ) 。 (1.2) P_{\text{bigrams}}(\text{长颈鹿, 脖子, 长}) = \frac{C(\text{长颈鹿, 脖子}) \cdot C(\text{脖子, 长})}{C(\text{长颈鹿}) \cdot C(\text{脖子})}。 \tag{1.2} Pbigrams(长颈鹿脖子)=C(长颈鹿)C(脖子)C(长颈鹿脖子)C(脖子)(1.2)

在此语料库中,C(长颈鹿)=5,C(脖子)=6,C(长颈鹿, 脖子)=2,C(脖子, 长) = 2,故有:

P bigrams ( 长颈鹿, 脖子, 长 ) = 2 5 ⋅ 2 6 = 2 15 。 (1.3) P_{\text{bigrams}}(\text{长颈鹿, 脖子, 长}) = \frac{2}{5} \cdot \frac{2}{6} = \frac{2}{15}。 \tag{1.3} Pbigrams(长颈鹿脖子)=5262=152(1.3)

由此可见,n-grams 具备对未知文本的泛化能力。但是,这种泛化能力会随着n的增大而逐渐减弱。应用trigrams对文本“长颈鹿脖子长”出现的概率进行计算,将出现“零概率”的情况。

因此,在n-grams语言模型中,n的值是影响性能的关键因素。

1.1.2 n-grams 的统计学原理

n-grams 语言模型是在n阶马尔可夫假设下,对语料库中出现的长度为n的词 序列出现概率的极大似然估计

定义1.1(n阶马尔可夫假设):

对于序列 { w 1 , w 2 , w 3 , . . . , w N } \{w_1, w_2, w_3, ..., w_N\} {w1,w2,w3,...,wN},当前状态 wN​ 出现的概率只与前 n 个状态 { w N − n , . . . , w N − 1 } \{w_{N-n}, ..., w_{N-1}\} {wNn,...,wN1}有关,即:

P ( w N ∣ w 1 , w 2 , . . . , w N − 1 ) ≈ P ( w N ∣ w N − n , . . . , w N − 1 ) (1.5) P(w_N|w_1, w_2, ..., w_{N-1}) \approx P(w_N|w_{N-n}, ..., w_{N-1}) \tag{1.5} P(wNw1,w2,...,wN1)P(wNwNn,...,wN1)(1.5)

定义1.2(离散型随机变量的极大似然估计): (存疑。。。)

给定离散型随机变量X的分布律为 P { X = x } = p ( x ; θ ) P\{X=x\}=p(x;θ) P{X=x}=p(x;θ)

X 1 , . . . , X N X_1,...,X_N X1,...,XN 为来 自X的样本, x 1 , . . . , x N x_1,...,x_N x1,...,xN 为对应的观察值,θ为待估计参数。

在参数θ下,分 布函数随机取到 x 1 , . . . , x N x_1,...,x_N x1,...,xN 的概率为:

p ( x ∣ θ ) = ∏ i = 1 N p ( x i ; θ ) (1.6) p(x|\theta) = \prod_{i=1}^{N} p(x_i; \theta) \tag{1.6} p(xθ)=i=1Np(xi;θ)(1.6)

构造似然函数为:

L ( θ ∣ x ) = p ( x ∣ θ ) = ∏ i = 1 N p ( x i ; θ ) (1.7) L(\theta|x) = p(x|\theta) = \prod_{i=1}^{N} p(x_i; \theta) \tag{1.7} L(θx)=p(xθ)=i=1Np(xi;θ)(1.7)

离散型随机变量的极大似然估计旨在找到θ使得L(θ|x)取最大值。

n-grams 语言模型总结:

n-grams 语言模型通过统计词序列在语料库中出现的频率来预测语言符号的概 率。其对未知序列有一定的泛化性,但也容易陷入“零概率”的困境。

基于各类神经网络的语言模型不断被提出,泛化能力越来越强。基于神经网络的语言模型不再通过显性的计算公式对语言符号的概率进行计算,而是利 用语料库中的样本对神经网络模型进行训练。

.


其他参考:【大模型基础_毛玉仁】系列文章


声明:资源可能存在第三方来源,若有侵权请联系删除!

http://www.yayakq.cn/news/917224/

相关文章:

  • 网站推广培训陕西网站建设教程
  • 学校网站总务建设店铺装修设计
  • 网站建设合同】如何自学wordpress
  • 长宁区网站建设网网络规划与设计案例
  • 便宜电商网站建设wordpress影音主题
  • 中工信融网站建设广州黄埔做网站
  • php网站开发实用技术练习题wordpress下拉
  • 用h5开发的网站模板宁德市住房和城乡建设局网站打不开
  • 泰安祥奕网络网站建设模板农村网站建设的意义
  • 城阳网站开发运城网站制作公司
  • 建设银行u盾官方网站首页wordpress获取登录权限
  • 大气的企业网站模板莆田网站 建设
  • 潍坊网络营销公司有哪些虞城seo代理地址
  • 苏宁易购网站建设的不足之处网站seo分析报告
  • 志成网站设计制作手机行业网站
  • 网站建设的战略作用iis怎么给网站设置权限
  • 钓鱼网站在线生成做任务领积分兑换别的网站上的会员
  • 上市的网站设计公司网站建设工作任务
  • 沈阳医疗网站制作模具加工东莞网站建设技术支持
  • 博学云网站建设网站开发中可能遇到的技术问题
  • 淘宝上网站开发退款汕头制作手机网站
  • 网站建设方案 规划百度指数怎么看地域数据
  • 哈尔滨网站制作公司南京短视频制作公司
  • 微网站建设包括哪些方面动态域名申请
  • 网站建设中网站图片如何修改led企业网站策划
  • 工作室主题网站模板外贸网页设计公司
  • 中企动力全网门户网站怀化汽车网站
  • 用网站做宣传的费用wordpress百度ping
  • 网站公司必须帮备案网站建设公司好不好
  • 设计服务网站建筑公司招聘岗位