当前位置: 首页 > news >正文

做网站需要注册公司吗wordpress导入模板不一样

做网站需要注册公司吗,wordpress导入模板不一样,固原网站建设,管理系统入口admin文章目录一、积和式的定义二、Ryser算法三、代码实现一、积和式的定义 积和式(permanent)是一种和行列式长得很像的矩阵函数。在介绍积和式之前,我们先看看行列式(determinant)的定义。 首先需要引入“排列”&#x…

文章目录

  • 一、积和式的定义
  • 二、Ryser算法
  • 三、代码实现

一、积和式的定义

积和式(permanent)是一种和行列式长得很像的矩阵函数。在介绍积和式之前,我们先看看行列式(determinant)的定义。

首先需要引入“排列”(permutation)的概念。对于集合S={1,2,⋯,n}S=\{1,2,\cdots,n\}S={1,2,,n},它的一个排列σ\sigmaσ就是对SSS中元素的一个重排。σ\sigmaσ的第iii个元素记作σi\sigma_iσi。例如,对于n=5n=5n=5,我们令σ={2,5,1,4,3}\sigma=\{2,5,1,4,3\}σ={2,5,1,4,3},则σ3=1\sigma_3=1σ3=1σ5=3\sigma_5=3σ5=3

排列的逆序对就是aaabbb前面但σa>σb\sigma_a>\sigma_bσa>σb的情况。例如σ={2,1,3,5,4}\sigma=\{2,1,3,5,4\}σ={2,1,3,5,4},有两个逆序对:(σ1,σ2)=(2,1)(\sigma_1,\sigma_2)=(2,1)(σ1,σ2)=(2,1)(σ4,σ5)=(5,4)(\sigma_4,\sigma_5)=(5,4)(σ4,σ5)=(5,4)。一个排列σ\sigmaσ中逆序对的个数记作τ(σ)\tau(\sigma)τ(σ)。令sgn(σ)=(−1)τ(σ)\mathrm{sgn}(\sigma)=(-1)^{\tau(\sigma)}sgn(σ)=(1)τ(σ)。对于一个排列σ\sigmaσ,如果你把其中的两个数互换,则sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)会变号。所有nnn个元素的排列的集合记作SnS_nSn。例如,S3={(123),(132),(213),(231),(312),(321)}S_3=\{(1\ 2\ 3),(1\ 3\ 2),(2\ 1\ 3),(2\ 3\ 1),(3\ 1\ 2),(3\ 2\ 1)\}S3={(1 2 3),(1 3 2),(2 1 3),(2 3 1),(3 1 2),(3 2 1)}

给定一个n×nn\times nn×n的矩阵A=(aij)n×nA=(a_{ij})_{n\times n}A=(aij)n×n,它的行列式为det⁡(A)=∑σ∈Sn(sgn(σ)∏i=1nai,σi)\det(A)=\sum\limits_{\sigma\in S_n}\left(\mathrm{sgn}(\sigma)\prod\limits_{i=1}^{n}a_{i,\sigma_{i}}\right) det(A)=σSn(sgn(σ)i=1nai,σi)例如,当n=3n=3n=3时,设A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则det⁡(A)=aei−afh+bfg−bdi+cdh−ceg\det(A)=aei-afh+bfg-bdi+cdh-ceg det(A)=aeiafh+bfgbdi+cdhceg而积和式的定义就是在行列式中把sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)去掉:perm(A)=∑σ∈Sn(∏i=1nai,σi)\mathrm{perm}(A)=\sum\limits_{\sigma\in S_n}\left(\prod\limits_{i=1}^{n}a_{i,\sigma_{i}}\right) perm(A)=σSn(i=1nai,σi)可以理解为:在矩阵中每行选取一个元素,且要求这些元素的列各不相同;将这些元素乘起来,得到一个乘积,积和式就是所有可能的选法对应的乘积之和。例如,当n=3n=3n=3时,设A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则perm(A)=aei+afh+bfg+bdi+cdh+ceg\mathrm{perm}(A)=aei+afh+bfg+bdi+cdh+ceg perm(A)=aei+afh+bfg+bdi+cdh+ceg积和式在量子场论、图论等领域中有应用。

积和式与行列式看起来只是某些项的符号不同,而且积和式看起来更简单了(没有sgn(σ)\mathrm{sgn}(\sigma)sgn(σ)),那是不是比行列式好算呢?答案是:大错特错!行列式可以用高斯消元法在O(n3)O(n^3)O(n3)的时间内算出来,而积和式目前最快的算法需要指数级的时间。事实上,1979年,Leslie G. Valiant证明了积和式的计算是#P\mathsf{\# P}#P完全问题,如果发现积和式有多项式时间的算法,那么将意味着FP=#P\mathsf{FP}=\mathsf{\#P}FP=#P,这是比P=NP\mathsf{P}=\mathsf{NP}P=NP还要强的命题。而大多数计算机科学家认为P≠NP\mathsf{P}\ne\mathsf{NP}P=NP,所以积和式大概率没有多项式时间的算法。我们要介绍的Ryser算法就是O(n2n)O(n 2^n)O(n2n)时间的。

二、Ryser算法

Ryser算法的核心思想就是容斥原理。我们还是先考察一下n=3n=3n=3的情况:令A=[abcdefghi]A=\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}A=adgbehcfi,则perm(A)=aei+afh+bfg+bdi+cdh+ceg\mathrm{perm}(A)=aei+afh+bfg+bdi+cdh+ceg perm(A)=aei+afh+bfg+bdi+cdh+ceg观察式子T=(a+b+c)(d+e+f)(g+h+i)T=(a+b+c)(d+e+f)(g+h+i)T=(a+b+c)(d+e+f)(g+h+i),你会发现它的展开式中包含积和式的666个项(用蓝色标出):T=adg+adh+adi+aeg+aeh+aei+afg+afh+afi+bdg+bdh+bdi+beg+beh+bei+bfg+bfh+bfi+cdg+cdh+cdi+ceg+ceh+cei+cfg+cfh+cfi\begin{aligned} T&=a d g + a d h + a d i + a e g + a e h + \textcolor{blue}{a e i} + a f g + \textcolor{blue}{a f h} + a f i\\ &+b d g + b d h + \textcolor{blue}{b d i} + b e g + b e h + b e i + \textcolor{blue}{b f g} + b f h + b f i\\ &+c d g + \textcolor{blue}{c d h} + c d i + \textcolor{blue}{c e g} + c e h + c e i + c f g + c f h + c f i \end{aligned}T=adg+adh+adi+aeg+aeh+aei+afg+afh+afi+bdg+bdh+bdi+beg+beh+bei+bfg+bfh+bfi+cdg+cdh+cdi+ceg+ceh+cei+cfg+cfh+cfi于是,我们只需要在TTT的展开式中剔除不属于积和式的项就可以了。不属于积和式的项,也就是选取的某两个元素在同一列的项。这些项的特点是:元素的列组成的集合大小不超过222。比如adhadhadh一项,它只涉及第一和第二列,而没有涉及第三列,所以它不是积和式中的项。同样,cficficfi只涉及第三列,它也不是积和式中的项。我们可以枚举元素的列组成的集合(集合的大小为222),将对应的项剔除出去。

  • 只涉及第一、二列的项:H12=(a+b)(d+e)(g+h)=adg+adh+aeg+aeh+bdg+bdh+beg+behH_{12}=(a+b)(d+e)(g+h)=a d g + a d h + a e g + a e h + b d g + b d h + b e g + b e hH12=(a+b)(d+e)(g+h)=adg+adh+aeg+aeh+bdg+bdh+beg+beh
  • 只涉及第二、三列的项:H23=(b+c)(e+f)(h+i)=beh+bei+bfh+bfi+ceh+cei+cfh+cfiH_{23}=(b+c)(e+f)(h+i)=b e h + b e i + b f h + b f i + c e h + c e i + c f h + c f iH23=(b+c)(e+f)(h+i)=beh+bei+bfh+bfi+ceh+cei+cfh+cfi
  • 只涉及第一、三列的项:H13=(a+c)(d+f)(g+i)=adg+adi+afg+afi+cdg+cdi+cfg+cfiH_{13}=(a+c)(d+f)(g+i)=a d g + a d i + a f g + a f i + c d g + c d i + c f g + c f iH13=(a+c)(d+f)(g+i)=adg+adi+afg+afi+cdg+cdi+cfg+cfi

只需要从TTT中把这些项剔除出去就可以了。但答案是perm(A)=T−H12−H23−H13\mathrm{perm}(A)=T-H_{12}-H_{23}-H_{13}perm(A)=TH12H23H13吗?非也,因为H12H_{12}H12H23H_{23}H23H13H_{13}H13之间还有重叠部分,我们减的时候把重叠部分减了两次,还得加回来。H12H_{12}H12H23H_{23}H23的重叠部分,就是只涉及第二列的项:behbehbehH12H_{12}H12H13H_{13}H13的重叠部分则是只涉及第一列的项:adgadgadg。同理,H23H_{23}H23H13H_{13}H13的重叠部分就是只涉及第三列的项——cficficfi了。

这样,我们得到计算三阶矩阵积和式的公式为:perm(A)=T−H12−H23−H13+adg+beh+cfi=(a+b+c)(d+e+f)(g+h+i)−(a+b)(d+e)(g+h)−(b+c)(e+f)(h+i)−(a+c)(d+f)(g+i)+adg+beh+cfi\begin{aligned} \mathrm{perm}(A)&=T-H_{12}-H_{23}-H_{13}+adg+beh+cfi\\ &=(a+b+c)(d+e+f)(g+h+i)-(a+b)(d+e)(g+h)-(b+c)(e+f)(h+i)-(a+c)(d+f)(g+i)+adg+beh+cfi \end{aligned}perm(A)=TH12H23H13+adg+beh+cfi=(a+b+c)(d+e+f)(g+h+i)(a+b)(d+e)(g+h)(b+c)(e+f)(h+i)(a+c)(d+f)(g+i)+adg+beh+cfi我们可以把这种容斥原理的思想推广到nnn阶矩阵的积和式。计算nnn阶矩阵的积和式的Ryser公式如下:perm(An×n)=(−1)n∑S⊆{1,2,⋯,n}[(−1)∣S∣∏i=1n(∑j∈Saij)]\mathrm{perm}(A_{n\times n})={(-1)}^{n} \sum\limits_{S\subseteq \{1,2,\cdots,n\}}\left[{(-1)}^{|S|}\prod\limits_{i=1}^{n}\left(\sum\limits_{j\in S}a_{ij}\right)\right] perm(An×n)=(1)nS{1,2,,n}(1)Si=1njSaij这个公式可以这么理解:我们把AAA的行和之积展开,里面一定包含我们要求的积和式;然后减去涉及n−1n-1n1列的项,加上涉及n−2n-2n2列的项,减去涉及n−3n-3n3列的项,……式中SSS就是涉及的列的集合,(−1)∣S∣(-1)^{|S|}(1)S用于计算是加还是减;前面的(−1)n{(-1)}^{n}(1)n是修正项,用于解决当nnn是奇数时,S={1,2,⋯,n}S=\{1,2,\cdots,n\}S={1,2,,n}的情况下(−1)∣S∣{(-1)}^{|S|}(1)S是负数的问题。

三、代码实现

理论上讲,如果我们按照格雷码顺序枚举SSS,那么时间复杂度可以降到O(n2n)O(n2^n)O(n2n)。但在这里我们为了方便起见就递归枚举SSS,对于每个SSS,计算各行的、列号为SSS的元素之和的乘积即可。下面给出一个时间复杂度为O(n22n)O(n^2 2^n)O(n22n)的C++实现:

#include <cstdint>typedef std::int64_t num;num recursion(int i, bool* b, int n, num** A)// 枚举S
{if(i == n) // 递归终点,已经得到一个S{num prod = 1;for(int row = 0; row < n; row++){num sum = 0;for(int col = 0; col < n; col++){if(b[col]){sum += A[row][col];}}prod *= sum;}int S_size = 0; // |S|for(int col = 0; col < n; col++){if(b[col]){S_size++;}}if(S_size % 2 == 1) // (-1)^|S|{prod = -prod;}return prod;}num result = 0;b[i] = true; // 选第i列result += recursion(i + 1, b, n, A);b[i] = false; // 不选第i列result += recursion(i + 1, b, n, A);return result;
}num ryser(int n, num** A)// 计算n x n矩阵A的积和式
{bool* b = new bool[n]; // S中是否含有第i列num result = recursion(0, b, n, A);delete []b;if(n % 2 == 1){result = -result; // (-1)^n}return result;
}
http://www.yayakq.cn/news/709518/

相关文章:

  • 鞍山工程建设信息网站网站后台word编辑器
  • 网站架构演变过程江苏省建设招标网站首页
  • 为什么电脑打开那个做网站都是那一个软件开发技术
  • 东阿网站建设价格重庆市今天最新消息
  • 网站建设图试描述一下网站建设的基本流程图
  • 百度手机网站制作水电行业公司设计logo
  • 做食物网站应该考虑些什么意思建立网站最先进的互联网技术有哪些
  • 中文域名网站标识网页游戏网址知乎
  • 如何做网站流程图站内推广策略
  • 网站要怎么做才专业wordpress数据库用户导出
  • 基本网站建设语言网站更换主机需要怎么做
  • 运城做网站设计的公司长沙房产
  • 端午节网站制作o2o网站做推广公司
  • 电子商务网站建设资讯软件系统设计
  • 上海做网站好的公司有哪些做网站的开发环境
  • 哪些浏览器可以看禁止访问的网站企业网站mp4怎么处理
  • 微信网站这么做详细描述建设网站
  • 中山做百度网站的公司吗男生最喜欢的浏览器推荐
  • 诸暨网站制作哪些公司制作网站域名服务器
  • 济南 网站建设公司 医疗网络公司网站建设费入什么科目
  • 仪征网站建设公司哪家好天津深圳网站开发定制
  • 网站都是用什么编写的百度打网站名称就显示 如何做
  • 网站建设咨询话术在线甜品网站开发书
  • 网站建设中两个月了网站运营目标
  • 网站主体负责人 法人互联网营销师证书含金量
  • ps设计网站首页效果图网站内容与目录结构
  • 只买域名怎么做网站代做毕业设计找哪个网站
  • c 网站开发 环境配置网络推广公司怎么报税
  • 福州有网站开发的公司吗黑马程序员培训机构
  • 怎么在自己的网站上做链接wordpress视频多集播放