当前位置: 首页 > news >正文

seo快速排名站外流量推广做网站可以挣多少钱

seo快速排名站外流量推广,做网站可以挣多少钱,公司做网站之前要准备什么,保密管理咨询公司目录 1. 路径交叉 ★★★ 2. 缺失的第一个正数 ★★★ 3. 寻找两个正序数组的中位数 ★★★ 附录 散列表 基本概念 常用方法 1. 路径交叉 给你一个整数数组 distance 。 从 X-Y 平面上的点 (0,0) 开始,先向北移动 distance[0] 米,然后向西移…

目录

1. 路径交叉  ★★★

2. 缺失的第一个正数  ★★★

3. 寻找两个正序数组的中位数  ★★★

附录

散列表

基本概念

常用方法


1. 路径交叉

给你一个整数数组 distance 

从 X-Y 平面上的点 (0,0) 开始,先向北移动 distance[0] 米,然后向西移动 distance[1] 米,向南移动 distance[2] 米,向东移动 distance[3] 米,持续移动。也就是说,每次移动后你的方位会发生逆时针变化。

判断你所经过的路径是否相交。如果相交,返回 true ;否则,返回 false 。

示例 1:

输入:distance = [2,1,1,2]
输出:true

示例 2:

输入:distance = [1,2,3,4]
输出:false

示例 3:

输入:distance = [1,1,1,1]
输出:true

提示:

  • 1 <= distance.length <= 105
  • 1 <= distance[i] <= 105

 代码:

class Solution:def isSelfCrossing(self, x: list) -> bool:n = len(x)if n < 3: return Falsefor i in range(3, n):if x[i] >= x[i - 2] and x[i - 3] >= x[i - 1]: return Trueif i >= 4 and x[i - 3] == x[i - 1] and x[i] / x[i - 4] >= x[i - 2]: return Trueif i >= 5 and x[i - 3] >= x[i - 1] and x[i - 2] >= x[i - 4] and x[i - 1] + x[i - 5] >= x[i - 3] and x[i] + x[i - 4] >= x[i - 2]: return Truereturn Falses = Solution()
distance = [2,1,1,2]
print(s.isSelfCrossing(distance))distance = [1,2,3,4]
print(s.isSelfCrossing(distance))distance = [1,1,1,1]
print(s.isSelfCrossing(distance))

输出:

True
False
True 

2. 缺失的第一个正数

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。

进阶:你可以实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案吗?

示例 1:

输入:nums = [1,2,0]
输出:3

示例 2:

输入:nums = [3,4,-1,1]
输出:2

示例 3:

输入:nums = [7,8,9,11,12]
输出:1

提示:

  • 0 <= nums.length <= 300
  • -2^31 <= nums[i] <= 2^31 - 1

 代码:

class Solution(object):def firstMissingPositive(self, nums):ls = len(nums)index = 0while index < ls:if nums[index] <= 0 or nums[index] > ls or nums[nums[index] - 1] == nums[index]:index += 1else:pos = nums[index] - 1nums[index], nums[pos] = nums[pos], nums[index]res = 0while res < ls and nums[res] == res + 1:res += 1return res + 1# %%
s = Solution()
print(s.firstMissingPositive(nums = [1,2,0]))
print(s.firstMissingPositive(nums = [3,4,-1,1]))
print(s.firstMissingPositive(nums = [7,8,9,11,12]))

输出:

3
2
1

3. 寻找两个正序数组的中位数

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:2.00000

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -10^6 <= nums1[i], nums2[i] <= 10^6

代码:

import math
from typing import Listclass Solution:def findMedianSortedArrays(self, nums1: List[int],nums2: List[int]) -> float:nums1Size = len(nums1)nums2Size = len(nums2)na = nums1Size + nums2Sizens = []i = 0j = 0m = int(math.floor(na / 2 + 1))while len(ns) < m:n = Noneif i < nums1Size and j < nums2Size:if nums1[i] < nums2[j]:n = nums1[i]i += 1else:n = nums2[j]j += 1elif i < nums1Size:n = nums1[i]i += 1elif j < nums2Size:n = nums2[j]j += 1ns.append(n)d = len(ns)if na % 2 == 1:return ns[d - 1]else:return (ns[d -1] + ns[d - 2]) / 2.0# %%
s = Solution()
print(s.findMedianSortedArrays([1,3], [2]))
print(s.findMedianSortedArrays([1,2], [3,4]))
print(s.findMedianSortedArrays([0,0], [0,0]))
print(s.findMedianSortedArrays([], [1]))
print(s.findMedianSortedArrays([2], []))

输出:

2
2.5
0.0
1
2


附录

散列表

Hash table,也叫哈希表,是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

基本概念

若关键字为k,则其值存放在f(k)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数,按这个思想建立的表为散列表。

对不同的关键字可能得到同一散列地址,即k1≠k2,而f(k1)==f(k2),这种现象称为冲突(英语:Collision)。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数f(k)和处理冲突的方法将一组关键字映射到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“像”作为记录在表中的存储位置,这种表便称为散列表,这一映射过程称为散列造表或散列,所得的存储位置称散列地址。

若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。

常用方法

散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位。实际工作中需视不同的情况采用不同的哈希函数,通常考虑的因素有:
· 计算哈希函数所需时间
· 关键字的长度
· 哈希表的大小
· 关键字的分布情况
· 记录的查找频率

1.直接寻址法:

取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)。若其中H(key)中已经有值了,就往下一个找,直到H(key)中没有值了,就放进去。

2. 数字分析法:

分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。

3. 平方取中法:

当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址。 

4. 折叠法:

将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。数位叠加可以有移位叠加和间界叠加两种方法。移位叠加是将分割后的每一部分的最低位对齐,然后相加;间界叠加是从一端向另一端沿分割界来回折叠,然后对齐相加。

5. 随机数法:

选择一随机函数,取关键字的随机值作为散列地址,即H(key)=random(key)其中random为随机函数,通常用于关键字长度不等的场合。

6. 除留余数法:

取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p≤m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。 

http://www.yayakq.cn/news/87001/

相关文章:

  • 银川网站设计怎么样推广普通话海报
  • 天津网站备案在百度上做个网站多少合适
  • 为企业规划一个网站杭州住房和城乡建设局官网
  • 芜湖做公司网站的局网站建设
  • linux新建网站濮阳网络
  • 网站服务器的重要性哈尔滨松北区建设局网站
  • 帮别人做数学题赚钱的网站青岛网站建设市场
  • 哪个网站做团购要求低点群晖 wordpress 升级
  • 做360网站优化排福州网站建设多少钱
  • 西安的网站设计公司名称兰州网络推广形式
  • 低价服装网站建设鹤壁网站推广公司
  • 深圳网站建设黄浦网络 技术差望野王维
  • 公司想建个网站怎么弄网站域名和网站网址
  • 网站有备案 为企业商标设计网站提供哪些服务
  • 学校做网站的目的浙江省网站建设报价
  • 怎么制作网站论坛模板知乎,闲鱼网站建设和网站运营
  • steam网站代做wordpress头像无法缓存
  • 乌克兰设计网站建设衡阳市网站建设公司
  • 有没有网址免费的广州seo运营
  • 做网站的英文编辑wordpress 更新 固定链接
  • pc 手机网站怎么建立外贸网站
  • 培 网站建设方案 doc怎样做网站jsp
  • 杭州网站做的好公司哪家好怎么做网站seo优化
  • 网站建设需要的技术手段网站制作公司套路
  • 匿名网站建设权威的大良网站建设
  • 做系统前的浏览网站能找回吗怎么买到精准客户的电话
  • 个人网站源码模板问卷调查网站赚钱
  • 电子商务网站的建设论文商洛网站建设求职简历
  • 南昌网站建设公司网站建设公司哪家好智慧团建网
  • 腾度淄博网站建设四川建设银行手机银行下载官方网站下载安装