当前位置: 首页 > news >正文

商标设计网站免费网站建设和管理情况调查表

商标设计网站免费,网站建设和管理情况调查表,个人不良信息举报网站,腾讯视频网站源码文章目录 机器学习专栏 无监督学习介绍 聚类 K-Means 使用方法 实例演示 代码解析 绘制决策边界 本章总结 机器学习专栏 机器学习_Nowl的博客-CSDN博客 无监督学习介绍 某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体&a…

文章目录

机器学习专栏

无监督学习介绍

聚类

K-Means

使用方法

实例演示

代码解析

绘制决策边界

本章总结


机器学习专栏

机器学习_Nowl的博客-CSDN博客

 

无监督学习介绍

某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体,有监督学习是蛋糕上的糖霜,强化学习是蛋糕上的樱桃”

现在的人工智能大多数应用有监督学习,但无监督学习的世界也是广阔的,因为如今大部分的数据都是没有标签的

上一篇文章讲到的降维就是一种无监督学习技术,我们将在本章介绍聚类


聚类

聚类是指发现数据集中集群的共同点,在没有人为标注的情况下将数据集区分为指定数量的类别

K-Means

K-Means是一种简单的聚类算法。能快速,高效地对数据集进行聚类


使用方法

from sklearn.cluster import KMeansmodel = KMeans(n_clusters=3)
model.fit(data)

 这段代码导入了KMeans机器学习库,指定模型将数据划分为三类


实例演示

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)# 获取每个数据点的所属簇标签
labels = kmeans.labels_# 获取每个簇的中心点
centroids = kmeans.cluster_centers_print(centroids)
# # 可视化结果
for i in range(num_clusters):cluster_points = data[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')plt.scatter(centroids[0][0], centroids[0][1])plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc='upper right')
plt.show()


代码解析

  1. 导入必要的库: 导入NumPy用于生成随机数据,导入KMeans类从scikit-learn中进行K-means聚类,导入matplotlib.pyplot用于可视化。

  2. 生成随机数据: 使用NumPy生成一个包含100个数据点的二维数组,每个数据点有两个特征。

  3. 指定簇的数量:num_clusters设置为希望的簇数,这里设置为3。

  4. 应用K-means算法: 创建KMeans对象,指定簇的数量,然后使用fit方法拟合数据。模型训练完成后,每个数据点将被分配到一个簇,并且簇中心点将被计算。

  5. 获取簇标签和中心点: 使用labels_属性获取每个数据点的簇标签,使用cluster_centers_属性获取每个簇的中心点。

  6. 可视化聚类结果: 使用循环遍历每个簇,绘制簇中的数据点。然后,使用scatter函数绘制簇中心点,并为图添加标题、轴标签和图例。

  7. 显示图形: 最后,使用show方法显示可视化结果


绘制决策边界

我们使用网格坐标和predict方法生成决策边界,然后使用contour函数在图上绘制边界。

主要代码

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)# 获取每个数据点的所属簇标签
labels = kmeans.labels_# 获取每个簇的中心点
centroids = kmeans.cluster_centers_# 可视化结果,包括决策边界
for i in range(num_clusters):cluster_points = data[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')# 绘制决策边界
h = 0.02  # 步长
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contour(xx, yy, Z, colors='gray', linewidths=1, alpha=0.5)  # 绘制决策边界plt.title('K-means Clustering with Decision Boundaries')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()


本章总结

  • 无监督学习的意义
  • 聚类的定义
  • K-Means方法聚类
  • 绘制K-Means决策边界
http://www.yayakq.cn/news/48943/

相关文章:

  • 时尚网站网页设计新浪短网址
  • 石家庄pc端网站建设网站开发仿站
  • 东莞专业网站推广工具网站做常规优化
  • 基于html5的旅游网站的设计与实现重庆注册公司网上申请入口
  • 宠物商品销售网站开发背景网页搜索快捷键是ctrl加什么
  • 制作公司网站要多少钱重庆营销型网站随做的好
  • 首涂模板网站win2008 iis7创建网站
  • 网站建设有哪些困难济南mip网站建设公司
  • 免费分站网站下载一个百度导航
  • 卖东西怎么做网站微信网页版手机登录入口
  • 长沙市网站建设公司代理商wordpress注册完成请检查电子邮件
  • 用word做旅游网站手机域名注册查询
  • 房产网站制作流程局域网组网方案
  • 网页制作与网站建设宝典 pdf商标图案参考
  • c 视频网站开发入门wordpress 字体大小
  • 网站建设的好处百度论坛首页官网
  • 最新域名网站百度用户服务中心在线申诉
  • 专业网站托管的公司凡科网站代码如何修改
  • 如何用国外网站做头条广州网络营销首荐佐兰网络vip
  • 建设网站 注册与登陆wordpress小工具没有
  • 长沙企业网站排名优化新媒体营销的概念是什么
  • 做网站主色调选择怎么自学做网站
  • 龙岗附近做网站公司哪家好温州做网站制作
  • 注册网站入口网站开发项目设计文档
  • 做适合漫画网站的图片广州市移动网站建设服务公司
  • 网站报价清单做华为网站的还有哪些功能
  • 如何做一个网页优化设计五年级下册数学答案
  • 在线网站开发枣庄三合一网站建设公司
  • 怎么用php自己做网站设计公司平面设计
  • 男通网站哪个好用网站做信用认证有必要吗