网站开发 php模板网页制作公司代码
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
基于二进制草蝉优化算法选择特征并使用KNN(K-Nearest Neighbors,K最近邻算法)进行训练是一种特征选择和分类算法的组合。这种方法主要用于解决特征选择问题,并利用选定的特征集合来训练KNN分类器。
下面是该算法的基本步骤:
特征选择:
采用二进制草蝉优化算法对原始特征集进行优化,从而选择出最佳特征子集。二进制草蝉优化算法是一种基于草蝉行为的启发式优化算法,用于解决特征选择问题。该算法通过模拟草蝉的生存行为来选择特征子集,以使得目标函数最小化或最大化。
特征提取:
通过二进制草蝉优化算法选择出的最佳特征子集,对原始数据集进行特征提取,得到一个新的数据集,该数据集只包含选定的特征。
数据预处理:
对特征提取后的数据集进行预处理,包括归一化、标准化或其他必要的数据处理步骤,以确保数据的可比性和有效性。
KNN分类器:
使用KNN算法来对处理后的数据集进行分类。KNN是一种常见的分类算法,它通过计算待分类样本与训练样本之间的距离,选取最近的K个训练样本,并根据这K个样本的分类标签来预测待分类样本的标签。
训练和测试:
使用经过特征选择和KNN分类器训练得到的模型,对测试数据进行分类,评估分类结果的准确性和性能。
需要注意的是,特征选择是为了去除冗余和噪音特征,提高分类性能和降低计算复杂度。而KNN作为分类器是一种懒惰学习方法,具有简单易实现的优点,但在大规模数据上可能效率较低。
最终的结果取决于草蝉优化算法的性能、特征选择和KNN分类器的调优以及数据集本身的特性。因此,在实际应用中,可能需要进行多次实验和优化,以选择最合适的特征子集和分类器参数。同时,建议参考相关研究论文和文献,以获得更深入的了解和具体实现细节。
📚2 运行结果



主函数部分代码:
close all
clear
clc
addpath(genpath(cd))
%% load the data
% load winedata.mat
load breast-cancer-wisconsin
% load ionosphere
% load Parliment1984
% load heartdata
load lymphography
%%
% preprocess data to remove Nan entries
for ii=1:size(Tdata,2)nanindex=isnan(Tdata(:,ii));Tdata(nanindex,:)=[];
end
labels=Tdata(:,end); %classes
attributesData=Tdata(:,1:end-1); %wine data
% for ii=1:size(attributesData,2) %normalize the data
% attributesData(:,ii)=normalize(attributesData(:,ii));
% end
[rows,colms]=size(attributesData); %size of data
%% seprate the data into training and testing
[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
trainData=attributesData(trainIdx,:); %training data
testData=attributesData(testIdx,:); %testing data
trainlabel=labels(trainIdx); %training labels
testlabel=labels(testIdx); %testing labels
%% KNN classification
Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);
predictedLables_KNN=predict(Mdl,testData);
cp=classperf(testlabel,predictedLables_KNN);
err=cp.ErrorRate;
accuracy=cp.CorrectRate;
%% SA optimisation for feature selection
dim=size(attributesData,2);
lb=0;ub=1;
x0=round(rand(1,dim));
fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);
options = optimoptions(@simulannealbnd,'MaxIterations',150,...'PlotFcn','saplotbestf');
[x,fval,exitflag,output] = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;
Target_pos_SA=round(x);
% final evaluation for GOA tuned selected features
[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...trainlabel,testlabel);
%% GOA optimisation for feature selection
SearchAgents_no=10; % Number of search agents
Max_iteration=100; % Maximum numbef of iterations
[Target_score,Target_pos,GOA_cg_curve, Trajectories,fitness_history,...position_history]=binaryGOA(SearchAgents_no,Max_iteration,lb,ub,dim,...trainData,testData,trainlabel,testlabel);
% final evaluation for GOA tuned selected features
[error_GOA,accuracy_GOA,predictedLables_GOA]=finalEval(Target_pos,trainData,testData,trainlabel,testlabel);
%%
% plot for Predicted classes
figure
plot(testlabel,'s','LineWidth',1,'MarkerSize',12)
hold on
plot(predictedLables_KNN,'o','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_GOA,'x','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_SA,'^','LineWidth',1,'MarkerSize',6)
% hold on
% plot(predictedLables,'.','LineWidth',1,'MarkerSize',3)
legend('Original Labels','Predicted by All','Predcited by GOA Tuned',... 'Predcited by SA Tuned','Location','best')
title('Output Label comparison of testing Data')
xlabel('-->No of test points')
ylabel('Test Data Labels' )
axis tight
% pie chart for accuracy corresponding to number of features
figure
subplot(1,2,1)
labels={num2str(size(testData,2)),num2str(numel(find(Target_pos))),...num2str(numel(find(Target_pos_SA)))};
pie([(size(testData,2)),numel(find(Target_pos)),numel(find(Target_pos_SA))],labels)
title('Number of features selected')
legendlabels={'Total Features','Features after GOA Selection',...'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
subplot(1,2,2)
labels={num2str(accuracy*100),num2str(accuracy_GOA*100),num2str(accuracy_SA*100)};
pie([accuracy,accuracy_GOA,accuracy_SA].*100,labels)
title('Accuracy for features selected')
legendlabels={'Total Features','Features after GOA Selection',...'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
🎉3 参考文献
[1]张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008(03):170-172.
部分理论引用网络文献,若有侵权联系博主删除。
