当前位置: 首页 > news >正文

同一域名可以做相同网站吗wordpress注册显示密码错误

同一域名可以做相同网站吗,wordpress注册显示密码错误,百度推广效果怎样,网站建设合同书(范本)在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而&#xff0c…

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而,随着研究的深入,Transformer模型不仅在NLP领域大放异彩,还被引入到计算机视觉领域,形成了Vision Transformer(ViT)。ViT模型在不依赖传统卷积神经网络(CNN)的情况下,依然能够在图像分类任务中取得优异的效果。本文将深入解析ViT模型的结构、特点,并通过代码示例展示如何使用MindSpore框架实现ViT模型的训练、验证和推理。

ViT模型结构

ViT模型的主体结构基于Transformer模型的编码器(Encoder)部分,其整体结构如下图所示:

vit-architecture

模型特点

为什么要使用Patch Embedding?

在传统的Transformer模型中,输入通常是一维的词向量序列,而图像数据是二维的像素矩阵。为了将图像数据转换为Transformer可以处理的形式,我们需要将图像划分为多个小块(patch),并将每个patch转换为一维向量。这一过程称为Patch Embedding。通过这种方式,我们可以将图像数据转换为类似于词向量的形式,从而利用Transformer模型处理图像数据。
为什么要使用位置编码(Position Embedding)?

由于Transformer模型在处理输入序列时不考虑顺序信息,因此在图像数据中,patch之间的空间关系可能会丢失。为了解决这个问题,我们引入了位置编码(Position Embedding),它为每个patch增加了位置信息,使得模型能够识别不同patch之间的空间关系。这对于保留图像的空间结构信息非常重要。

  1. Patch Embedding:输入图像被划分为多个patch(图像块),然后将每个二维patch转换为一维向量,并加上类别向量和位置向量作为模型输入。
  2. Transformer Encoder:模型主体的Block结构基于Transformer的Encoder部分,主要结构是多头注意力(Multi-Head Attention)和前馈神经网络(Feed Forward)。
  3. 分类头(Head):在Transformer Encoder堆叠后接一个全连接层,用于分类。

环境准备与数据读取

开始实验之前,请确保本地已经安装了Python环境和MindSpore。

首先下载本案例的数据集,该数据集是从ImageNet中筛选出来的子集。数据集路径结构如下:

.dataset/├── ILSVRC2012_devkit_t12.tar.gz├── train/├── infer/└── val/
from download import download
import os
import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms# 下载数据集
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"
path = download(dataset_url, path, kind="zip", replace=True)data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)trans_train = [transforms.RandomCropDecodeResize(size=224, scale=(0.08, 1.0), ratio=(0.75, 1.333)),transforms.RandomHorizontalFlip(prob=0.5),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

Transformer基本原理

Transformer模型源于2017年的一篇文章,其主要结构为多个编码器和解码器模块。编码器和解码器由多头注意力(Multi-Head Attention)、前馈神经网络(Feed Forward)、归一化层(Normalization)和残差连接(Residual Connection)组成。

Self-Attention机制

Self-Attention机制是Transformer的核心,其主要步骤如下:

  1. 输入向量映射:将输入向量映射成Query(Q)、Key(K)、Value(V)三个向量。
  2. 计算注意力权重:通过点乘计算Query和Key的相似性,并通过Softmax函数归一化。
  3. 加权求和:使用注意力权重对Value进行加权求和,得到最终的Attention输出。

以下是Self-Attention的代码实现:

from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self, dim: int, num_heads: int = 8, keep_prob: float = 1.0, attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out

Transformer Encoder

为什么要使用残差连接(Residual Connection)和归一化层(Normalization Layer)?

在深层神经网络中,随着层数的增加,梯度消失和梯度爆炸的问题变得越来越严重。残差连接通过在每一层加上输入的跳跃连接,可以有效缓解这些问题,确保信息能够顺利传递。此外,归一化层(如LayerNorm)可以加速模型的训练,并提高模型的稳定性和泛化能力。这些技术的结合,使得Transformer模型能够在更深的层次上进行有效的训练。

Transformer Encoder由多层Self-Attention和前馈神经网络(Feed Forward)组成,通过残差连接和归一化层增强模型的训练效果和泛化能力。

class FeedForward(nn.Cell):def __init__(self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, activation: nn.Cell = nn.GELU, keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self, dim: int, num_layers: int, num_heads: int, mlp_dim: int, keep_prob: float = 1., attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim, num_heads=num_heads, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim, hidden_features=mlp_dim, activation=activation, keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])), ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):return self.layers(x)

ViT模型的输入

ViT模型通过将输入图像划分为多个patch,将每个patch转换为一维向量,并加上类别向量和位置向量作为模型输入。以下是Patch Embedding的代码实现:

class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self, image_size: int = 224, patch_size: int = 16, embed_dim: int = 768, input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x

整体构建ViT

以下代码构建了一个完整的ViT模型:

from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self, image_size: int = 224, input_channels: int = 3, patch_size: int = 16, embed_dim: int = 768, num_layers: int = 12, num_heads: int = 12, mlp_dim: int = 3072, keep_prob: float = 1.0, attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: Optional[nn.Cell] = nn.LayerNorm, pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size, patch_size=patch_size, embed_dim=embed_dim, input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0), shape=(1, 1, embed_dim), dtype=ms.float32, name='cls', requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0), shape=(1, num_patches + 1, embed_dim), dtype=ms.float32, name='pos_embedding', requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim, num_layers=num_layers, num_heads=num_heads, mlp_dim=mlp_dim, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob, drop_path_keep_prob=drop_path_keep_prob, activation=activation, norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x

模型训练与推理

模型训练

模型训练前,需要设定损失函数、优化器和回调函数。以下是训练ViT模型的代码:

from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train# 定义超参数
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()# 构建模型
network = ViT()# 加载预训练模型参数
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"
vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)# 定义学习率
lr = nn.cosine_decay_lr(min_lr=float(0), max_lr=0.00005, total_step=epoch_size * step_size, step_per_epoch=step_size, decay_epoch=10)# 定义优化器
network_opt = nn.Adam(network.trainable_params(), lr, momentum)# 定义损失函数
class CrossEntropySmooth(LossBase):def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):super(CrossEntropySmooth, self).__init__()self.onehot = ops.OneHot()self.sparse = sparseself.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)def construct(self, logit, label):if self.sparse:label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)loss = self.ce(logit, label)return lossnetwork_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 设置检查点
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)# 初始化模型
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")# 训练模型
model.train(epoch_size, dataset_train, callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)], dataset_sink_mode=False)

在这里插入图片描述

模型验证

模型验证过程主要应用了ImageFolderDataset,CrossEntropySmooth和Model等接口。以下是验证ViT模型的代码:

dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)trans_val = [transforms.Decode(),transforms.Resize(224 + 32),transforms.CenterCrop(224),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)# 构建模型
network = ViT()# 加载预训练模型参数
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)network_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 定义评价指标
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(), 'Top_5_Accuracy': train.Top5CategoricalAccuracy()}if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")# 验证模型
result = model.eval(dataset_val)
print(result)

模型推理

在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。以下是推理ViT模型的代码:

dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)trans_infer = [transforms.Decode(),transforms.Resize([224, 224]),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_infer = dataset_infer.map(operations=trans_infer, input_columns=["image"], num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)# 读取推理数据
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):image = image["image"]image = ms.Tensor(image)prob = model.predict(image)label = np.argmax(prob.asnumpy(), axis=1)mapping = index2label()output = {int(label): mapping[int(label)]}print(output)show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG", result=output, out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")

在这里插入图片描述
在这里插入图片描述

http://www.yayakq.cn/news/730520/

相关文章:

  • django做的网站模板西安学建网站
  • 山东济南网站开发自己做网站的图片
  • 营销网站建设创意wordpress哪个模版好用
  • 中国航发网上采购平台济南 网站优化
  • php宠物用品公司网站源码成都装修网站制作
  • 昆山建设企业网站装修计算器在线计算
  • 网站qq聊天代码wordpress前台投稿上传图片大小
  • 外网有趣的网站网络规划设计师科目分类
  • 做餐饮系统网站网站建设能给客户带来什么
  • 烟台 o2o平台带动做网站行业抖音代运营服务内容
  • htm5网站建设深圳58同城招聘网最新招聘信息
  • 做便民工具网站怎么样wordpress 重装界面
  • 安徽 网站建设软件界面设计风格
  • k歌里的相片是通过网站做的吗wordpress当地时间
  • 关于网站设计的书籍微盟微商城多少钱一年?
  • 高端网站建设文案遵义58同城网
  • 建设部职称网站网站建设朋友圈怎么写
  • 萍乡建网站wordpress 去空格
  • 临清网站建设价格广东手机网站建设费用
  • 怎样提高网站的打开速度知乎网站内容建设的逻辑
  • 盐山网站制作wordpress企业魔板
  • 红黑配色网站wordpress 1.0
  • 企业网站策划过程网站建设 思路
  • 可以做内容的网站江苏省建设招标网站首页
  • 南沙开发区建设和交通局网站网站建设与管理的考试
  • 重庆网站建设方案详细方案wordpress去除评论
  • 学做网站要会哪些网站内容建设的原则
  • 建立一个网店网站营销型网站建设哪里济南兴田德润优惠吗
  • 网站目标建设国际国内时事
  • 天元建设集团有限公司资质长沙seo优化排名推广