当前位置: 首页 > news >正文

旅游网站建设的费用明细seo快速收录快速排名

旅游网站建设的费用明细,seo快速收录快速排名,园林网站源代码,展示网站系统架构设计下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行: 步骤1&#x…

下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行:

步骤1:定义二阶电机数学模型

考虑一个带有迟滞影响的二阶电机数学模型,其一般形式可以表示为:
y ¨ ( t ) + a 1 y ˙ ( t ) + a 0 y ( t ) = u ( t ) + d ( t ) + h ( t ) \ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = u(t) + d(t) + h(t) y¨(t)+a1y˙(t)+a0y(t)=u(t)+d(t)+h(t)
其中, y ( t ) y(t) y(t) 是电机的输出, u ( t ) u(t) u(t) 是控制输入, d ( t ) d(t) d(t) 是非线性干扰, h ( t ) h(t) h(t) 是迟滞影响。

步骤2:RBF神经网络模拟非线性干扰

RBF神经网络是一种前馈神经网络,其输出可以表示为:
d ^ ( t ) = ∑ i = 1 N w i φ ( ∥ x ( t ) − c i ∥ ) \hat{d}(t) = \sum_{i=1}^{N} w_i\varphi(\left\lVert x(t) - c_i\right\rVert) d^(t)=i=1Nwiφ(x(t)ci)
其中, w i w_i wi 是权重, φ \varphi φ 是径向基函数(通常使用高斯函数), c i c_i ci 是中心, x ( t ) x(t) x(t) 是输入向量。

步骤3:WNN预测非线性函数

小波神经网络是一种结合了小波变换和神经网络的模型,用于预测模型中的非线性函数。

代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from pywt import wavedec# 定义二阶电机数学模型
def second_order_motor_model(y, u, d, h, a0, a1):y_dot = np.zeros(2)y_dot[0] = y[1]y_dot[1] = -a0 * y[0] - a1 * y[1] + u + d + hreturn y_dot# 定义RBF神经网络模拟非线性干扰
def rbf_network(x, centers, weights, sigma):N = len(centers)phi = np.zeros(N)for i in range(N):phi[i] = np.exp(-np.linalg.norm(x - centers[i])**2 / (2 * sigma**2))return np.dot(weights, phi)# 定义WNN预测非线性函数
def wnn_predict(x, model):# 这里简单使用MLPRegressor作为示例return model.predict([x])[0]# 模拟参数
T = 10  # 模拟时间
dt = 0.01  # 时间步长
t = np.arange(0, T, dt)
N = len(t)# 模型参数
a0 = 1.0
a1 = 0.5# 初始化状态
y = np.zeros((N, 2))
y[0] = [0, 0]# 控制输入
u = np.sin(2 * np.pi * 0.5 * t)# 非线性干扰和迟滞影响
d = 0.5 * np.sin(2 * np.pi * 1.5 * t)
h = 0.2 * np.sign(np.sin(2 * np.pi * 2 * t))# RBF神经网络参数
N_rbf = 10  # RBF神经元数量
centers = np.random.rand(N_rbf, 2)
weights = np.random.rand(N_rbf)
sigma = 0.1# WNN模型训练
X_wnn = np.column_stack((y[:, 0], y[:, 1], u))
y_wnn = -a0 * y[:, 0] - a1 * y[:, 1] + u + d + h
wnn_model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', max_iter=1000)
wnn_model.fit(X_wnn, y_wnn)# 模拟过程
for i in range(1, N):# 预测非线性干扰d_hat = rbf_network(y[i-1], centers, weights, sigma)# 预测非线性函数f_hat = wnn_predict(np.concatenate((y[i-1], [u[i-1]])), wnn_model)# 抵消影响u_compensated = u[i-1] - d_hat - f_hat# 更新状态y_dot = second_order_motor_model(y[i-1], u_compensated, d[i-1], h[i-1], a0, a1)y[i] = y[i-1] + y_dot * dt# 绘制结果
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(t, y[:, 0], label='Output')
plt.xlabel('Time (s)')
plt.ylabel('Output')
plt.legend()plt.subplot(2, 1, 2)
plt.plot(t, u, label='Control Input')
plt.xlabel('Time (s)')
plt.ylabel('Control Input')
plt.legend()plt.tight_layout()
plt.show()

代码解释

  1. 二阶电机数学模型second_order_motor_model 函数定义了二阶电机的动力学方程。
  2. RBF神经网络rbf_network 函数实现了RBF神经网络的计算,用于模拟非线性干扰。
  3. WNN预测wnn_predict 函数使用 MLPRegressor 作为WNN的示例,用于预测非线性函数。
  4. 模拟过程:在模拟过程中,首先使用RBF神经网络预测非线性干扰,然后使用WNN预测非线性函数,最后将其从控制输入中抵消,更新系统状态。
  5. 结果绘制:使用 matplotlib 绘制系统的输出和控制输入。

注意事项

  • 代码中的RBF神经网络和WNN只是简单示例,实际应用中可能需要更复杂的网络结构和训练方法。
  • 非线性干扰和迟滞影响的具体形式可以根据实际情况进行调整。
http://www.yayakq.cn/news/540643/

相关文章:

  • 网站怎么做社区营销西安是哪个省中国地图
  • 查询个人信息的网站网站推广途径和要点
  • 自己做的手机网站怎么加入小程序公众号开发者模式后自动回复
  • 建网站能挣钱吗上市公司排行榜
  • 网站怎么做3d商品浏览网站备案的服务器
  • 哪个网站开发培训好谷歌chrome手机版
  • 网站栏目模块山东省建设局网站
  • 网站建设网站营销网站托管一体化泰州建设局网站安监站通报
  • 网站开发工程师简介zhihu网站建设
  • 可以做设计兼职的网站有哪些工作室网络工程师有前途吗
  • 做计量检定的网站网站建设 前后台目录结构
  • 品牌网站建设需要哪些规划高端定制网站开发需要多少钱
  • 风雨同舟网站建设安阳市地图
  • 域名注册服务商网站网站优化的论文
  • 甘肃省住房与城乡建设部网站遂宁建设局网站首页
  • 加强网站硬件建设北京服装设计公司排名前十强
  • 做淘宝客的的网站有什么要求高端网站建设 案例
  • 门户网站建设方案招标文件网络营销的核心工作是
  • 公司的 SEO与网站建设网站系统建设项目
  • 京东网站建设思维导图郑州seo公司
  • 肥城网站制作网站建设是设计师吗
  • 怎么看网站是谁做的能源网站建设
  • 百度基木鱼建站wordpress 新手
  • 网站上的图是怎么做的抽奖网站做的下去吗
  • 看网站有没有做404可画在线设计网站
  • 哈尔滨做网站费用报价小城镇建设网站
  • 非凡免费建网站平台网络架构方法
  • 网站建设 营销在线作图软件有哪些
  • 高端品牌网站建设兴田德润在哪儿天津网站建设电话咨询
  • 免飞网站北京公司网站