当前位置: 首页 > news >正文

杭州网站建设方案推广网站logo教程

杭州网站建设方案推广,网站logo教程,网站推广方案案例,wordpress代理管理多站点OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API&#xff0…

OpenCV DNN C++ 使用 YOLO 模型推理

引言

YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API,用于加载和运行预先训练的深度学习模型。本文将详细介绍如何使用 OpenCV 的 DNN 模块来进行 YOLOv5 的目标检测。

准备工作

确保您已经安装了 OpenCV 和 OpenCV 的 DNN 模块。如果您还没有,可以参照 OpenCV 官方文档来进行安装。

核心代码解析

结构体和类定义

struct DetectResult
{int classId;float score;cv::Rect box;
};class YOLOv5Detector
{
public:void initConfig(std::string onnxpath, int iw, int ih, float threshold);void detect(cv::Mat& frame, std::vector<DetectResult>& result);private:int input_w = 640;int input_h = 640;cv::dnn::Net net;int threshold_score = 0.25;
};

我们定义了一个名为 DetectResult 的结构体,用于存储检测结果,其中包括目标的类别 ID、得分和边界框。

YOLOv5Detector 类提供了两个主要的公共方法:

  • initConfig:用于初始化网络模型和一些参数。
  • detect:用于进行目标检测。

初始化配置

void YOLOv5Detector::initConfig(std::string onnxpath, int iw, int ih, float threshold)
{this->input_w = iw;this->input_h = ih;this->threshold_score = threshold;this->net = cv::dnn::readNetFromONNX(onnxpath);
}

initConfig 方法中,我们主要进行了以下操作:

  • 设置输入图像的宽度和高度(input_winput_h)。
  • 设置目标检测的置信度阈值(threshold_score)。
  • 通过 cv::dnn::readNetFromONNX 方法加载预训练的 ONNX 模型。

目标检测

void YOLOv5Detector::detect(cv::Mat& frame, std::vector<DetectResult>& results)
{// 图象预处理 - 格式化操作int w = frame.cols;int h = frame.rows;int _max = std::max(h, w);cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);cv::Rect roi(0, 0, w, h);frame.copyTo(image(roi));float x_factor = image.cols / 640.0f;float y_factor = image.rows / 640.0f;cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(this->input_w, this->input_h), cv::Scalar(0, 0, 0),true, false);this->net.setInput(blob);cv::Mat preds = this->net.forward();cv::Mat det_output(preds.size[1], preds.size[2], CV_32F, preds.ptr<float>());float confidence_threshold = 0.5;std::vector<cv::Rect> boxes;std::vector<int> classIds;std::vector<float> confidences;for (int i = 0; i < det_output.rows; i++){float confidence = det_output.at<float>(i, 4);if (confidence < 0.45){continue;}cv::Mat classes_scores = det_output.row(i).colRange(5, 8);cv::Point classIdPoint;double score;minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);// 置信度 0~1之间if (score > this->threshold_score){float cx = det_output.at<float>(i, 0);float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);int x = static_cast<int>((cx - 0.5 * ow) * x_factor);int y = static_cast<int>((cy - 0.5 * oh) * y_factor);int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(score);}}// NMSstd::vector<int> indexes;cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);for (size_t i = 0; i < indexes.size(); i++){DetectResult dr;int index = indexes[i];int idx = classIds[index];dr.box = boxes[index];dr.classId = idx;dr.score = confidences[index];cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);results.push_back(dr);}std::ostringstream ss;std::vector<double> layersTimings;double freq = cv::getTickFrequency() / 1000.0;double time = net.getPerfProfile(layersTimings) / freq;ss << "FPS: " << 1000 / time << " ; time : " << time << " ms";putText(frame, ss.str(), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
}

detect 方法中,我们进行了以下几个关键步骤:

  • 对输入图像进行预处理。
  • 使用 cv::dnn::blobFromImage 函数创建一个 4 维 blob。
  • 通过 setInputforward 方法进行前向传播,得到预测结果。

然后,我们对预测结果进行解析,通过非极大值抑制(NMS)得到最终的目标检测结果。

参考资料

  • OpenCV 官方文档

完整代码

#include <fstream>
#include <iostream>
#include <string>
#include <map>
#include <opencv2/opencv.hpp>struct DetectResult
{int classId;float score;cv::Rect box;
};class YOLOv5Detector
{
public:void initConfig(std::string onnxpath, int iw, int ih, float threshold);void detect(cv::Mat& frame, std::vector<DetectResult>& result);private:int input_w = 640;int input_h = 640;cv::dnn::Net net;int threshold_score = 0.25;
};void YOLOv5Detector::initConfig(std::string onnxpath, int iw, int ih, float threshold)
{this->input_w = iw;this->input_h = ih;this->threshold_score = threshold;this->net = cv::dnn::readNetFromONNX(onnxpath);
}void YOLOv5Detector::detect(cv::Mat& frame, std::vector<DetectResult>& results)
{// 图象预处理 - 格式化操作int w = frame.cols;int h = frame.rows;int _max = std::max(h, w);cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);cv::Rect roi(0, 0, w, h);frame.copyTo(image(roi));float x_factor = image.cols / 640.0f;float y_factor = image.rows / 640.0f;cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(this->input_w, this->input_h), cv::Scalar(0, 0, 0),true, false);this->net.setInput(blob);cv::Mat preds = this->net.forward();cv::Mat det_output(preds.size[1], preds.size[2], CV_32F, preds.ptr<float>());float confidence_threshold = 0.5;std::vector<cv::Rect> boxes;std::vector<int> classIds;std::vector<float> confidences;for (int i = 0; i < det_output.rows; i++){float confidence = det_output.at<float>(i, 4);if (confidence < 0.45){continue;}cv::Mat classes_scores = det_output.row(i).colRange(5, 8);cv::Point classIdPoint;double score;minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);// 置信度 0~1之间if (score > this->threshold_score){float cx = det_output.at<float>(i, 0);float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);int x = static_cast<int>((cx - 0.5 * ow) * x_factor);int y = static_cast<int>((cy - 0.5 * oh) * y_factor);int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(score);}}// NMSstd::vector<int> indexes;cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);for (size_t i = 0; i < indexes.size(); i++){DetectResult dr;int index = indexes[i];int idx = classIds[index];dr.box = boxes[index];dr.classId = idx;dr.score = confidences[index];cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);results.push_back(dr);}std::ostringstream ss;std::vector<double> layersTimings;double freq = cv::getTickFrequency() / 1000.0;double time = net.getPerfProfile(layersTimings) / freq;ss << "FPS: " << 1000 / time << " ; time : " << time << " ms";putText(frame, ss.str(), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
}std::map<int, std::string> classNames = {{0, "-1"}, {1, "0"}, {2, "1"}};int main(int argc, char* argv[])
{std::shared_ptr<YOLOv5Detector> detector = std::make_shared<YOLOv5Detector>();detector->initConfig(R"(D:\AllCodeProjects\best.onnx)", 640, 640, 0.25f);cv::Mat frame = cv::imread(R"(D:\0002.jpg)");std::vector<DetectResult> results;detector->detect(frame, results);for (DetectResult& dr : results){cv::Rect box = dr.box;cv::putText(frame, classNames[dr.classId], cv::Point(box.tl().x, box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX,.5, cv::Scalar(0, 0, 0));}cv::imshow("OpenCV DNN", frame);cv::waitKey();results.clear();
}
http://www.yayakq.cn/news/477053/

相关文章:

  • 重庆做网站制作的公司站长推荐自动跳转
  • 网站建设明细报价单嵌入式软件开发面试
  • 企业网站开发用什么语言写长春网站建设致电吉网传媒优
  • 商丘做网站公司新站seo快速收录网站内容页设计类专业大学排名
  • 摄影网站建设开题报告北京住总第一开发建设有限公司网站
  • 企业 php网站建设公关服务
  • dede网站qq类文章源码网站的空间和域名备案吗
  • 佛山网站建设培训苏州设计网站建设
  • 网站会对特殊的ip做跳转上海校园兼职网站建设
  • 开发企业网站多少钱网站地图模板下载
  • 网站建设初期个人做网站要买什么域名
  • 做网站备案是承诺书在哪下载文员工作内容
  • 建站怎么建工业物联网平台
  • 有专业做外贸的网站吗1.简述网站建设的步骤
  • 城阳做网站的动画制作网页
  • 免费一级做网站app推广软件有哪些
  • 包头正规旅游网站开发哪家好六安市建设银行网站
  • 中卫网站推广软件化妆品购物网站建设目的
  • 模板网站大全用vs2013做网站
  • 中国建设监理协会网站查询成绩什么的网站策划
  • 上海网站建设选缘魁自己做平台需要多少钱
  • 大连网站建设谁家好建筑模板制作过程
  • Wordpress 手机网站小牛门户网站
  • 摄影比赛投稿网站平板电脑网站模板
  • 手机上搭建个人网站设计公司愿景
  • 如何做网站支付链接自己做网站怎么搜索
  • 江西建设门户网站免费网站站长
  • 肥城网站建设价格网站管理是什么工作
  • ps个人网站设计总结wordpress jquery版本
  • 网站首页缩略图 seo盐山做网站价格