当前位置: 首页 > news >正文

公司网站后台更新专门做评测的网站有哪些

公司网站后台更新,专门做评测的网站有哪些,网站文字代码,传媒公司排名前十一、本文介绍 作为入门性篇章,这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析,ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。 二、ShuffleAttention原理分析 ShuffleA…

一、本文介绍

作为入门性篇章,这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析,ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。

二、ShuffleAttention原理分析

ShuffleAttention官方论文地址:文章

ShuffleAttention官方代码地址:官方代码

ShuffleAttention注意力机制:采用Shuffle单元有效地结合了两种类型的注意力机制。首先将通道维分组为多个子特征,然后再并行处理它们。然后,对于每个子特征,利用Shuffle Unit在空间和通道维度上描绘特征依赖性。之后,将所有子特征汇总在一起,并采用“channel shuffle”运算符来启用不同子特征之间的信息通信。

三、相关代码:

ShuffleAttention注意力的代码,如下。

class ShuffleAttention(nn.Module):def __init__(self, channel=512, reduction=16, G=8):super().__init__()self.G = Gself.channel = channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid = nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()# group into subfeaturesx = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w# channel_splitx_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w# channel attentionx_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1x_channel = x_0 * self.sigmoid(x_channel)# spatial attentionx_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,wx_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,wx_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w# concatenate along channel axisout = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,wout = out.contiguous().view(b, -1, h, w)# channel shuffleout = self.channel_shuffle(out, 2)return out

四、YOLOv8中ShuffleAttention使用方法

1.YOLOv8中添加ShuffleAttention模块:

首先在ultralytics/nn/modules/conv.py最后添加ShuffleAttention模块的代码。

2.在conv.py的开头__all__ = 内添加ShuffleAttention模块的类别名:

3.在同级文件夹下的__init__.py内添加SimAM的相关内容:(分别是from .conv import ShuffleAttention ;以及在__all__内添加ShuffleAttention)

4.在ultralytics/nn/tasks.py进行ShuffleAttention注意力机制的注册,以及在YOLOv8的yaml配置文件中添加ShuffleAttention即可。

首先打开task.py文件,按住Ctrl+F,输入parse_model进行搜索。找到parse_model函数。在其最后一个else前面添加以下注册代码:

        elif m in {CBAM,ECA,ShuffleAttention}:#添加注意力模块,没有CBAM、eca的,M删除即可c1, c2 = ch[f], args[0]if c2 != nc:c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, *args[1:]]

然后,就是新建一个名为YOLOv8_ShuffleAttention.yaml的配置文件:(路径:ultralytics/cfg/models/v8/YOLOv8_ShuffleAttention.yaml)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call CPAM-yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, ShuffleAttention, [1024]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

其中参数中nc,由自己的数据集决定。本文测试,采用的coco8数据集,有80个类别。

在根目录新建一个train.py文件,内容如下:

from ultralytics import YOLO
import warningswith warnings.catch_warnings():warnings.simplefilter("ignore")model = YOLO('ultralytics/cfg/models/v8/YOLOv8_ShuffleAttention.yaml')  # 从YAML建立一个新模型results = model.train(data='ultralytics/cfg/datasets/coco8.yaml', epochs=1,imgsz=640,optimizer="SGD")

训练输出:​

​​

五、总结

以上就是ShuffleAttention的原理及使用方式,但具体ShuffleAttention注意力机制的具体位置放哪里,效果更好。需要根据不同的数据集做相应的实验验证。希望本文能够帮助你入门YOLO中注意力机制的使用。

http://www.yayakq.cn/news/677517/

相关文章:

  • 猴哥影院在线电影观看seo是付费推广吗
  • 上海外贸网站推广服务wordpress侧边栏 菜单
  • 网站建设基础教程视频可以拿自己电脑做网站主机
  • 江西住房和城乡建设部网站安徽六安属于南方还是北方
  • 建设商业门户网站的重要网站大小
  • 如何申请一个网站网站自适应与响应式
  • 网站建设用户量分析分销商城模板
  • 随州网站建设学校wordpress抓取新闻
  • 手机介绍网站鄂州网红打卡地方
  • 网站开发编辑器网站建设落地页源码
  • 深圳做棋牌网站建设多少钱网站建设论文答辩
  • 银行网站建设中凡客诚品的网站特色
  • 合肥网站建设晨飞网站流量盈利模式
  • 标准网站建设合同有源码怎么做app
  • 电子类网站模板本地数据库搭建网站
  • 做淘客哪个网站好点个人备案网站服务内容
  • 电子商务网站建设与管理期末考试seo对网店推广的作用
  • 南昌网站建设设计惠阳网站开发
  • 青浦手机网站建设兰州市科协网站
  • 网站访客qq系统手机网站开发工具6
  • 怎样做才能让网站有排名在线图片制作生成器免费
  • 网站开发所用的技术百度sem运营
  • 个人网站建设方案策划书win8风格网站开发实例
  • 帮别人做网站开价东莞资深网站建设
  • 温州正规制作网站公司flash型网站
  • 家具企业网站建设wordpress自动采集工具
  • 380元网站建设传奇网站建设基本流程
  • 网站建设平台硬件要求智能优化大师下载
  • 爱获客电销系统长春关键词优化平台
  • 如何侵入网站服务器wordpress 非小工具形式 微博秀