当前位置: 首页 > news >正文

大港天津网站建设济南室内设计学校

大港天津网站建设,济南室内设计学校,苏州手工活外发加工网,选择推广途径与原因冒泡排序 算法步骤 不断的两两比较&#xff0c;这样当前最大的元素总是会排在最后面。所以称为冒泡。 图解算法 代码实现 public static int[] bubbleSort(int[] arr) {// i是排好了几个数for (int i 1; i < arr.length; i) {// flag标记当前循环是否调整了顺序&#xff0c…

冒泡排序

算法步骤

不断的两两比较,这样当前最大的元素总是会排在最后面。所以称为冒泡。

图解算法

在这里插入图片描述

代码实现


public static int[] bubbleSort(int[] arr) {// i是排好了几个数for (int i = 1; i < arr.length; i++) {// flag标记当前循环是否调整了顺序,如果没有调整,说明排序完成boolean flag = true;// arr.length - i控制数组尾巴for (int j = 0; j < arr.length - i; j++) {if (arr[j] > arr[j + 1]) {int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;flag = false;}}if (flag) {break;}}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

选择排序

算法步骤

不断地选择最小/最大的元素和当前未排序序列的头进行交换

图解算法

在这里插入图片描述

代码实现

public static int[] selectionSort(int[] arr) {// 找到的元素放到第i个,未排序序列头for (int i = 0; i < arr.length - 1; i++) {// minIndex记录当前未排序的最小元素的索引int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换if (minIndex != i) {int tmp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = tmp;}}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n 2 ) O(n^2) O(n2) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

插入排序

算法步骤

就是扑克牌理牌。从前往后读取未排列序列的元素,拿到新元素后从后往前遍历已排序序列找到合适的位置插入。

图解算法

在这里插入图片描述

代码实现

public static int[] insertionSort(int[] arr) {for (int i = 1; i < arr.length; i++) {// preindex记录已排序序列的尾int preIndex = i - 1;// current是当前要插入的元素int current = arr[i];while (preIndex >= 0 && current < arr[preIndex]) {// 往后移arr[preIndex + 1] = arr[preIndex];preIndex -= 1;}arr[preIndex + 1] = current;}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

希尔排序

算法步骤

不断的按照增量来分出子数组的数量,子数组内部进行插入排序,然后缩小增量,减少分子数组的数量,然后接着插入排序,直到增量为1之后再进行一次插入排序即可。

算法图解

在这里插入图片描述

代码实现

public static int[] shellSort(int[] arr) {int n = arr.length;int gap = n / 2;while (gap > 0) {for (int i = gap; i < n; i++) {int current = arr[i];int preIndex = i - gap;// 插入排序while (preIndex >= 0 && arr[preIndex] > current) {arr[preIndex + gap] = arr[preIndex];preIndex -= gap;}arr[preIndex + gap] = current;}gap /= 2;}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2) 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

归并排序

算法步骤

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
就是让子数列内部有序,然后让两个子序列段间有序,不断重复直到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int[] mergeSort(int[] arr) {if (arr.length <= 1) {return arr;}int middle = arr.length / 2;int[] arr_1 = Arrays.copyOfRange(arr, 0, middle);int[] arr_2 = Arrays.copyOfRange(arr, middle, arr.length);return merge(mergeSort(arr_1), mergeSort(arr_2));
}public static int[] merge(int[] arr_1, int[] arr_2) {int[] sorted_arr = new int[arr_1.length + arr_2.length];int idx = 0, idx_1 = 0, idx_2 = 0;while (idx_1 < arr_1.length && idx_2 < arr_2.length) {if (arr_1[idx_1] < arr_2[idx_2]) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;} else {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;}idx += 1;}if (idx_1 < arr_1.length) {while (idx_1 < arr_1.length) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;idx += 1;}} else {while (idx_2 < arr_2.length) {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;idx += 1;}}return sorted_arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( n ) O(n) O(n)
排序方式:外部排序

快速排序

算法步骤

从序列中随机挑出一个元素,做为 基准;通过一趟排序将待排序列分隔成独立的两部分,比基准小的在左边,比基准大的在右边,则可分别对这两部分子序列继续进行排序,以达到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int partition(int[] array, int low, int high) {int pivot = array[high];int pointer = low;for (int i = low; i < high; i++) {if (array[i] <= pivot) {int temp = array[i];array[i] = array[pointer];array[pointer] = temp;pointer++;}System.out.println(Arrays.toString(array));}int temp = array[pointer];array[pointer] = array[high];array[high] = temp;return pointer;
}
public static void quickSort(int[] array, int low, int high) {if (low < high) {int position = partition(array, low, high);quickSort(array, low, position - 1);quickSort(array, position + 1, high);}
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2),平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( l o g n ) O(logn) O(logn)
排序方式:内部排序

堆排序

算法步骤

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点。

图解算法

在这里插入图片描述

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

计数排序

算法步骤

http://www.yayakq.cn/news/259267/

相关文章:

  • 成功的个人网站北京网站建设公司怎么样
  • 一般的企业网站开发价格英文网站制作
  • 用什么程序做视频网站云南城市建设职业学院成绩查询网站
  • 企业网站建设公司地址app软件开发价格
  • 网站的制作方法网站vip怎么做
  • 自己做网站如何赚钱吗长沙城乡住房建设厅网站
  • 卢松松wordpress博客简述seo的概念
  • 百度指数官方网站WordPress安装插件要FTP
  • 抄袭网站案例动漫制作专业累吗
  • 建设一个货代网站想要多少钱如何建立一个网站平台
  • 网站的优化seowordpress查看网站内容
  • 衡水建设网站网站建设贵州
  • 韶关企业网站建设手机微信管理系统
  • 长春自助建站软件网页设计与制作教程邓长寿
  • 长春作网站的那家推广计划步骤
  • 优化网站建设人员组成安徽建站之星
  • 书画院网站建设模板用微信怎么做企业网站
  • 静态网站开发用到的技术唐山seo设计网站
  • 开封网站seo免费个人博客网站模板下载
  • 网站建设平台合同模板下载岳阳做网站费用
  • 文佳佳做网站郑州艾特网站建设
  • 开发网站需求设计闵行网站推广
  • 如何查网站空间大小网站开发工程师专业好不好
  • heritrix做网站xml网站地图每天更新
  • 网站开发的后期维护自己做cdk兑换码网站
  • 360网站建设公司哪家好网站两边广告
  • 深圳沙井做公司网站注册服务公司流程和费用
  • 陕西电商网站建设wordpress演示站教程
  • 个人网站可以做淘宝客网站吗网络推广简历
  • 做外贸网站需要什么影响网站用户体验