当前位置: 首页 > news >正文

做的好的公司网站创建网站制作仪表企业

做的好的公司网站,创建网站制作仪表企业,四川省建设信息网官网,招聘网站页面设计图片测试集和训练集都是在之前搭建好的基础上进行修改的,重点记录与之前不同的代码。 还是使用的花分类的数据集进行训练和测试的。 一、训练集 1、搭建网络 设置参数:使用辅助分类器,采用权重初始化 net GoogleNet(num_classes5, aux_logi…

测试集和训练集都是在之前搭建好的基础上进行修改的,重点记录与之前不同的代码。

还是使用的花分类的数据集进行训练和测试的。

一、训练集

1、搭建网络

设置参数:使用辅助分类器,采用权重初始化

net = GoogleNet(num_classes=5, aux_logits=True, init_weights=True)

2、参数输出

之前的模型只有 1 个输出,但由于GoogleNet使用了两个辅助分类器,所以会有 3 个输出。

定义三个输出,分别计算主分类器、辅助分类器1、辅助分类器2的损失函数并相加,最后将损失函数反向传播,使用优化器更新参数模型。 

不单独放代码了,不知道哪里是改动的。图片中红色框中是改动的

整个训练集的代码

import torch
import torch.nn as nn
from torchvision import transforms, datasets, utils
import matplotlib as plt
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from model import GoogleNet
import os
import json
import timedevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))
image_path = data_root + "/data_set/flower_data"
# train set
train_dataset = datasets.ImageFolder(root=image_path + "/train",transform=data_transform["train"])
train_num = len(train_dataset)# {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflower': 3, 'tulips': 4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# 把文件写入接送文件
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices,json', 'w') as json_file:json_file.write(json_str)batch_size = 32
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size, shuffle=True,num_workers=0)
#
validate_dataset = datasets.ImageFolder(root=image_path + "/val",transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size,shuffle=False, num_workers=0)# test_data_iter = iter(validate_loader)
# test_image, test_label = next(test_data_iter)
#
# # 查看图片
# def imshow(img):
#     img = img / 2 + 0.5
#     nping = img.numpy()
#     plt.imshow(np.transpose(nping, (1, 2, 0)))
#     plt.show()
# # print labels
# print(' '.join('%5s' % str(cla_dict[test_label[j].item()]) for j in range(4)))
# # show images
# imshow(utils.make_grid(test_image))net = GoogleNet(num_classes=5, aux_logits=True, init_weights=True)
net.to(device)
loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.0003)best_acc = 0.0
save_path = './GoogleNet.pth'
# best_acc = 0.0
for epoch in range(2):# trainnet.train()running_loss = 0.0t1 = time.perf_counter()for step, data in enumerate(train_loader, start=0):images, labels = dataoptimizer.zero_grad()logits, aux_logits2, aux_logits1 = net(images.to(device))loss0 = loss_function(logits, labels.to(device))loss1 = loss_function(aux_logits1, labels.to(device))loss2 = loss_function(aux_logits2, labels.to(device))loss = loss0 + loss1 * 0.3 + loss2 * 0.3loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()rate = (step+1) / len(train_loader)a = "*" * int(rate*50)b = "." *int((1-rate)*50)print("\rtrain loss: (:3.0f)%[()->:.3f)".format(int(rate * 100), a, b, loss), end="")print()print(time.perf_counter()-t1)net.eval()acc = 0.0with torch.no_grad():for data_test in validate_loader:test_images, test_labels = data_testoutputs = net(test_images.to(device))predict_y = torch.max(outputs, dim=1)[1]acc += (predict_y == test_labels.to(device)).sum().item()accurate_test = acc / val_numif accurate_test > best_acc:best_acc = accurate_testtorch.save(net.state_dict(), save_path)print('[epoch %d] train_loss: %.3f test_accuracy: %.3f' %(epoch + 1, running_loss / step, acc / val_num))
print("Finished Training")

训练完成 

 中间有几次报错,不过在看懂报错后很快改过来了。

二、测试集

载入模型

在创建模型的时候,aux_logits不会构建辅助分类器,但是之前训练的参数会保存。

所以,在载入模型的时候,要设置参数strict=False, 它可以精准匹配当前模型与所需要载入的权重模型的结构。

辅助分类器中的参数全部存放在unexpecte_keys中。

测试集全部代码

 可以自己找图片进行预测看准确率。

import torch
import matplotlib.pyplot as plt
import json
from model import GoogleNet
from PIL import Image
from torchvision import transformsdata_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# load image
img = Image.open("8.jpeg")
plt.imshow(img)
img = data_transform(img)
img = torch.unsqueeze(img, dim=0)# read class_indent
try:json_file = open('./class_indices,json', 'r')class_indict = json.load(json_file)
except Exception as e:print(e)exit(-1)# create model
model = GoogleNet(num_classes=5, aux_logits=False)
model_weight_path = "./GoogleNet.pth"
missing_keys, unexpected_keys = model.load_state_dict(torch.load(model_weight_path), strict=False)
model.eval()
with torch.no_grad():output = torch.squeeze(model(img))predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

准确率好低,可能是模型训练的还不够吧。

http://www.yayakq.cn/news/992554/

相关文章:

  • 网站seo综合查询新手怎么开始做微商
  • 网站建设集团wap网站推广方法
  • 儿童玩具网站建设实训报告苏州seo门户网
  • 新网站在谷歌上面怎么做推广WordPress全屏图
  • 从零开始网站建设下载大连自己的网站
  • 做哪种类型网站赚钱手游排行榜
  • 网站访问速度wordpress内涵段子
  • wordpress软件网站主题网站开发工具中三剑客包括
  • 学会网站建设总结营销策划方案制定
  • 建设通官方网站下载wordpress前端登陆
  • 电子商务网站建设与运营的试题wordpress电视直播插件下载
  • 建设网站要注意事项化妆品行业网站开发
  • 乐山市城乡规划建设局网站厦门网站搭建
  • 网站建设公司哪家好 搜搜磐石网络徐州绵业珠宝网站建设
  • 长沙com建站网站设计php投资理财企业网站模板
  • 1688代加工官方网站建设网站需要体现的流程有哪些内容
  • 张家港做网站公司有的网站网速慢
  • 做雨棚的网站商城网站开发项目文档
  • 仙游h5做网站快照推广
  • 网站建设需要度搜去北京seo公司wyhseo
  • 博罗网站建设湖南省交通建设质安监督局网站
  • 网站上做视频如何盈利中英文的网站开发
  • 深圳网站开发公司有哪些招聘网站建设的意义
  • 山东省建设部网站潍坊做网站
  • 重庆赛区竞赛网站建设微信网站开场动画
  • 济宁建设企业网站环保科技东莞网站建设
  • 百度蜘蛛抓取新网站用织梦建设网站
  • 建设创意网站长春企业平台
  • 招聘网站的SEO怎么做网站建设举措
  • 宁波网站推广义乌网站建设与维护