当前位置: 首页 > news >正文

北京网站快速排名优化汕头市城市建设总公司网站

北京网站快速排名优化,汕头市城市建设总公司网站,手机设计软件app哪个好,wordpress中文标题字体12.1 神经元与感知机 12.1.1 感知机 感知机: 1957, Fank Rosenblatt 由两层神经元组成,可以简化为右边这种,输入通常不参与计算,不计入神经网络的层数,因此感知机是一个单层神经网络 感知机 训练法则&am…

12.1 神经元与感知机

12.1.1 感知机

感知机: 1957, Fank Rosenblatt

在这里插入图片描述

由两层神经元组成,可以简化为右边这种,输入通常不参与计算,不计入神经网络的层数,因此感知机是一个单层神经网络

  • 感知机
    训练法则(Perceptron Training Rule)

在这里插入图片描述

  1. 使用感知机训练法则,能够根据训练样本的标签值和感知机输出之间的误差,来自动的调整权值,具备学习能力
  2. 第一个用算法来精确定义的神经网络模型
  3. 线性二分类的分类器,分类决策边界为直线(2v)、平面(3v)、超平面(多维)
  4. 感知机算法存在多个解,受到权值向量初始值,错误样本顺序的影响
  5. 对于非线性可分得数据集,感知机训练法则无法收敛,迭代结果会一直震荡。
  6. 为了克服非线性数据集无法收敛的情况,提出了delta法则

12.1.2 Delta法则

  • Delta法则:使用梯度下降法,找到能够最佳拟合训练样本集的权向量
  • 逻辑回归可以看作是最简单的单层神经网络,单个感知机只有一个输出节点,只能实现二分类问题

12.2 实例: 单层神经网络实现鸢尾花分类

  • 这里我们使用神经网络的思想来实现对鸢尾花的分类,这个程序的实现过程和sofmax回归几乎是完全一样的,我们只是从设计和实现神经网络的角度重新描述这个过程

12.2.1 神经网络的设计

  • 设计
  1. 首先设计 神经网络的结构,确定神经网络有几层,每层中有几个节点,节点间是如何连接的。
  2. 使用什么激活函数
  3. 使用什么损失函数
  • 选择
  1. 选择单层前馈型神经网络的结构,实现对鸢尾花的分类,输入节点的个数由属性的个数决定,输出曾节点个数由分类类别的个数决定
    在这里插入图片描述
  2. 因为是分类问题,所以选择softmax函数作为激活函数,标签值使用独热编码来表示
  3. 使用交叉熵损失函数来计算误差

12.2.2 神经网络的实现

在这里插入图片描述
前面为了简化编程,将B融入w,为
在这里插入图片描述
在本节中,我们将Wb分离开来,单独表示,这是考虑到后面实现多层神经网络时,编程更加直观

12.2.3 神经网络的实现的重要函数

12.2.3.1 softmax函数
tf.nn.softmax()

对于Y=XW+BY=XW+BY=XW+B

tf.nn.softmax(tf.matmul(X_train,W)+b)
12.2.3.2 独热编码-tf.one_hot()
tf.one_hot(indices,depth)
  • indices:要求是一个整数
  • depth:独热编码的深度

对于该例鸢尾花数据

tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
12.2.3.3 交叉熵损失函数-tf.keras.losses.categorical_crossentropy()

使用其自带的来实现

tf.keras.losses.categorical_crossentropy(y_true,y_pred)
  • y_true :表示独热编码的标签值
  • y_pred:softmax函数的输出
  • 该函数的结果时一个一维张量,其中的每一个元素是每个样本的交叉熵损失,使用求平均值函数得到平均交叉熵损失
tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train))

12.2.4 完整的程序实现

12.2.4.1 导入库
  • InternalError: Bias GEMM launch failed报错解决如下
# 1 导入库
import tensorflow as tf
print("TensorFlow version: ", tf.__version__)import pandas as pd
import numpy as np
import matplotlib.pyplot as plt# 在使用GPU版本的Tensorflow训练模型时,有时候会遇到显存分配的错误
# InternalError: Bias GEMM launch failed
# 这是在调用GPU运行程序时,GPU的显存空间不足引起的,为了避免这个错误,可以对GPU的使用模式进行设置
gpus = tf.config.experimental.list_physical_devices('GPU')# 这是列出当前系统中的所有GPU,放在列表gpus中
# 使用第一块gpu,所以是gpus[0],把它设置为memory_growth模式,允许内存增长也就是说在程序运行过程中,根据需要为TensoFlow进程分配显存
# 如果系统中有多个GPU,可以使用循环语句把它们都设置成为true模式
tf.config.experimental.set_memory_growth(gpus[0], True)
12.2.4.2 加载数据
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1],TEST_URL)df_iris_train = pd.read_csv(train_path, header=0)
df_iris_test = pd.read_csv(test_path, header=0)iris_train = np.array(df_iris_train) # (120,5)
iris_train = np.array(df_iris_test) # (30 5)
12.2.4.3 数据预处理
# 3 数据预处理
x_train = iris_train[:,0:4] # (120,4)
y_train = iris_train[:,4] # (120,)x_test = iris_test[:,0:4] # (30,4)
y_test = iris_test[:,4] # (30,)
# 以上4个数据都是64位浮点数('float64')# 对属性值进行标准化处理,使它均值为0
x_train = x_train - np.mean(x_train, axis=0)
x_test = x_test - np.mean(x_test, axis=0)X_train = tf.cast(x_train,tf.float32)
Y_train = tf.one_hot(tf.costant(y_train,dtype=tf.int32),3)X_test = tf.cast(x_test,tf.float32)
Y_test = tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
# 以上4个数据都是float32形式的tensorflow的张量
12.2.4.4 设置超参数和显示间隔
# 4 设置超参数和显示间隔
learn_rate = 0.5
iter = 50display_step = 10
12.2.4.5 设置模型参数初始值
# 5 设置模型参数初始值
np.random.seed(612)
W = tf.Variable(np.random.randn(4,3),dtype=tf.float32)# W为4行3列的二维张量,取正态分布的随机值
B = tf.Variable(np.zeros([3]),dtype=tf.float32) # B为长度为3的一维张量,在神经网络中,初始化为0
12.2.4.6 训练模型
# 6 训练模型# 准确率
acc_train=[]
acc_test=[]
# 交叉熵损失
cce_train=[]
cce_test=[]for  i in range(0,iter+1):with tf.GradientTape() as tape:PRED_train = tf.nn.softmax(tf.matmul(X_train,W)+B) # 激活函数为S函数Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train)) # 训练集的交叉熵损失PRED_test = tf.nn.softmax(tf.matmul(X_test,W)+B)Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test)) # 测试集的交叉熵损失accuracy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))accuracy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))acc_train.append(accuracy_train)acc_test.append(accuracy_test)cce_train.append(Loss_train)cce_test.append(Loss_test)grads = tape.gradient(Loss_train,[W,B])W.assign_sub(learn_rate*grads[0])B.assign_sub(learn_rate*grads[1])if i % display_step == 0:print("i: %i,TrainAcc:%f, TrainLoss:%f,TestAcc:%f,TestLoss:%f" % (i,accuracy_train,Loss_train,accuracy_test,Loss_test))

运行结果:

i: 0,TrainAcc:0.333333, TrainLoss:2.066978,TestAcc:0.266667,TestLoss:1.880856
i: 10,TrainAcc:0.875000, TrainLoss:0.339410,TestAcc:0.866667,TestLoss:0.461705
i: 20,TrainAcc:0.875000, TrainLoss:0.279647,TestAcc:0.866667,TestLoss:0.368414
i: 30,TrainAcc:0.916667, TrainLoss:0.245924,TestAcc:0.933333,TestLoss:0.314814
i: 40,TrainAcc:0.933333, TrainLoss:0.222922,TestAcc:0.933333,TestLoss:0.278643
i: 50,TrainAcc:0.933333, TrainLoss:0.205636,TestAcc:0.966667,TestLoss:0.251937
12.2.4.7 可视化

# 7 结果可视化
plt.figure(figsize=(10,3))plt.subplot(121)
plt.plot(cce_train,c='b',label="train")
plt.plot(cce_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.legend()plt.subplot(122)
plt.plot(acc_train,c='b',label="train")
plt.plot(acc_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.legend()plt.show()

输出结果:

在这里插入图片描述

12.2.4.8 完整程序
# 1 导入库
from sys import displayhook
import tensorflow as tf
print("TensorFlow version: ", tf.__version__)import pandas as pd
import numpy as np
import matplotlib.pyplot as plt# 在使用GPU版本的Tensorflow训练模型时,有时候会遇到显存分配的错误
# InternalError: Bias GEMM launch failed
# 这是在调用GPU运行程序时,GPU的显存空间不足引起的,为了避免这个错误,可以对GPU的使用模式进行设置
gpus = tf.config.experimental.list_physical_devices('GPU')# 这是列出当前系统中的所有GPU,放在列表gpus中
# 使用第一块gpu,所以是gpus[0],把它设置为memory_growth模式,允许内存增长也就是说在程序运行过程中,根据需要为TensoFlow进程分配显存
# 如果系统中有多个GPU,可以使用循环语句把它们都设置成为true模式
tf.config.experimental.set_memory_growth(gpus[0], True)# 2 加载数据TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1],TEST_URL)df_iris_train = pd.read_csv(train_path, header=0)
df_iris_test = pd.read_csv(test_path, header=0)iris_train = np.array(df_iris_train) # (120,5)
iris_test = np.array(df_iris_test) # (30 5)# 3 数据预处理
x_train = iris_train[:,0:4] # (120,4)
y_train = iris_train[:,4] # (120,)x_test = iris_test[:,0:4] # (30,4)
y_test = iris_test[:,4] # (30,)
# 以上4个数据都是64位浮点数('float64')# 对属性值进行标准化处理,使它均值为0
x_train = x_train - np.mean(x_train, axis=0)
x_test = x_test - np.mean(x_test, axis=0)X_train = tf.cast(x_train,tf.float32)
Y_train = tf.one_hot(tf.constant(y_train,dtype=tf.int32),3)X_test = tf.cast(x_test,tf.float32)
Y_test = tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
# 以上4个数据都是float32形式的tensorflow的张量# 4 设置超参数和显示间隔
learn_rate = 0.5
iter = 50display_step = 10# 5 设置模型参数初始值
np.random.seed(612)
W = tf.Variable(np.random.randn(4,3),dtype=tf.float32)# W为4行3列的二维张量,取正态分布的随机值
B = tf.Variable(np.zeros([3]),dtype=tf.float32) # B为长度为3的一维张量,在神经网络中,初始化为0# 6 训练模型# 准确率
acc_train=[]
acc_test=[]
# 交叉熵损失
cce_train=[]
cce_test=[]for  i in range(0,iter+1):with tf.GradientTape() as tape:PRED_train = tf.nn.softmax(tf.matmul(X_train,W)+B) # 激活函数为S函数Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train)) # 训练集的交叉熵损失PRED_test = tf.nn.softmax(tf.matmul(X_test,W)+B)Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test)) # 测试集的交叉熵损失accuracy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))accuracy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))acc_train.append(accuracy_train)acc_test.append(accuracy_test)cce_train.append(Loss_train)cce_test.append(Loss_test)grads = tape.gradient(Loss_train,[W,B])W.assign_sub(learn_rate*grads[0])B.assign_sub(learn_rate*grads[1])if i % display_step == 0:print("i: %i,TrainAcc:%f, TrainLoss:%f,TestAcc:%f,TestLoss:%f" % (i,accuracy_train,Loss_train,accuracy_test,Loss_test))# 7 结果可视化
plt.figure(figsize=(10,3))plt.subplot(121)
plt.plot(cce_train,c='b',label="train")
plt.plot(cce_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.legend()plt.subplot(122)
plt.plot(acc_train,c='b',label="train")
plt.plot(acc_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.legend()plt.show()

12.3多层神经网络

在这里插入图片描述
在这里插入图片描述

12.3.1多层神经网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.3.2超参数和验证集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.4误差反向传播法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.5激活函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.6 实例:多层神经网络实现鸢尾花分类

在这里插入图片描述

# 1 导入库
from sys import displayhook
import tensorflow as tf
print("TensorFlow version: ", tf.__version__)import pandas as pd
import numpy as np
import matplotlib.pyplot as plt# 在使用GPU版本的Tensorflow训练模型时,有时候会遇到显存分配的错误
# InternalError: Bias GEMM launch failed
# 这是在调用GPU运行程序时,GPU的显存空间不足引起的,为了避免这个错误,可以对GPU的使用模式进行设置
gpus = tf.config.experimental.list_physical_devices('GPU')# 这是列出当前系统中的所有GPU,放在列表gpus中
# 使用第一块gpu,所以是gpus[0],把它设置为memory_growth模式,允许内存增长也就是说在程序运行过程中,根据需要为TensoFlow进程分配显存
# 如果系统中有多个GPU,可以使用循环语句把它们都设置成为true模式
tf.config.experimental.set_memory_growth(gpus[0], True)# 2 加载数据TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1],TEST_URL)df_iris_train = pd.read_csv(train_path, header=0)
df_iris_test = pd.read_csv(test_path, header=0)iris_train = np.array(df_iris_train) # (120,5)
iris_test = np.array(df_iris_test) # (30 5)# 3 数据预处理
x_train = iris_train[:,0:4] # (120,4)
y_train = iris_train[:,4] # (120,)x_test = iris_test[:,0:4] # (30,4)
y_test = iris_test[:,4] # (30,)
# 以上4个数据都是64位浮点数('float64')# 对属性值进行标准化处理,使它均值为0
x_train = x_train - np.mean(x_train, axis=0)
x_test = x_test - np.mean(x_test, axis=0)X_train = tf.cast(x_train,tf.float32)
Y_train = tf.one_hot(tf.constant(y_train,dtype=tf.int32),3)X_test = tf.cast(x_test,tf.float32)
Y_test = tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
# 以上4个数据都是float32形式的tensorflow的张量# 4 设置超参数和显示间隔
learn_rate = 0.5
iter = 50display_step = 10# 5 设置模型参数初始值
np.random.seed(612)
W1 = tf.Variable(np.random.randn(4,16),dtype=tf.float32)# W1为4行16列的二维张量,取正态分布的随机值
B1 = tf.Variable(np.zeros([16]),dtype=tf.float32) # B1为长度为16的一维张量,在神经网络中,初始化为0
W2 = tf.Variable(np.random.randn(16,3),dtype=tf.float32)# W2为16行3列的二维张量,取正态分布的随机值
B2 = tf.Variable(np.zeros([3]),dtype=tf.float32) # B2为长度为3的一维张量,在神经网络中,初始化为0
# 6 训练模型# 准确率
acc_train=[]
acc_test=[]
# 交叉熵损失
cce_train=[]
cce_test=[]for  i in range(0,iter+1):with tf.GradientTape() as tape:Hidden_train = tf.nn.relu(tf.matmul(X_train,W1)+B1)PRED_train = tf.nn.softmax(tf.matmul(Hidden_train,W2)+B2) # 激活函数为S函数Loss_train = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train)) # 训练集的交叉熵损失
#tf.keras.losses.categorical_crossentropy(y_true, y_pred)语句表示通过调用tf.keras库中的交叉熵损失函数计算标签值与预测值之间的误差。Hidden_test = tf.nn.relu(tf.matmul(X_test,W1)+B1)PRED_test = tf.nn.softmax(tf.matmul(Hidden_test,W2)+B2)Loss_test = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test))# 这里也可以选择不放在with语句里面,因为我们只选择了训练数据更新梯度accuracy_train = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))accuracy_test = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))acc_train.append(accuracy_train)acc_test.append(accuracy_test)cce_train.append(Loss_train)cce_test.append(Loss_test)grads = tape.gradient(Loss_train,[W1,B1,W2,B2])W1.assign_sub(learn_rate*grads[0])B1.assign_sub(learn_rate*grads[1])W2.assign_sub(learn_rate*grads[2])B2.assign_sub(learn_rate*grads[3])if i % display_step == 0:print("i: %i,TrainAcc:%f, TrainLoss:%f,TestAcc:%f,TestLoss:%f" % (i,accuracy_train,Loss_train,accuracy_test,Loss_test))# 7 结果可视化
plt.figure(figsize=(10,3))plt.subplot(121)
plt.plot(cce_train,c='b',label="train")
plt.plot(cce_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.legend()plt.subplot(122)
plt.plot(acc_train,c='b',label="train")
plt.plot(acc_test,c='r',label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.legend()plt.show()

输出结果为

i: 0,TrainAcc:0.433333, TrainLoss:2.205641,TestAcc:0.400000,TestLoss:1.721138
i: 10,TrainAcc:0.941667, TrainLoss:0.205314,TestAcc:0.966667,TestLoss:0.249661
i: 20,TrainAcc:0.950000, TrainLoss:0.149540,TestAcc:1.000000,TestLoss:0.167103
i: 30,TrainAcc:0.958333, TrainLoss:0.122346,TestAcc:1.000000,TestLoss:0.124693
i: 40,TrainAcc:0.958333, TrainLoss:0.105099,TestAcc:1.000000,TestLoss:0.099869
i: 50,TrainAcc:0.958333, TrainLoss:0.092934,TestAcc:1.000000,TestLoss:0.084885

在这里插入图片描述

http://www.yayakq.cn/news/273474/

相关文章:

  • 手机用什么软件做网站网站app怎么制作教程
  • 万网的怎么做网站地图兼职网站推广如何做
  • 陵水网站建设费用车公庙网站建设
  • 安徽省住房和城乡建设厅官方网站自媒体做什么领域比较好
  • 网站建设流程有几个阶段网站建设招标模板
  • 企业自助建站软件如何做表白网站的教程
  • 网站后台添加查看爬虫的痕迹动漫制作专业需要绘画基础吗
  • 危险网站怎么做二维码小程序哪家好
  • 我局在网站建设方面怎么修改网站源文件
  • 网站目录优化对php网站开发技术课程总结
  • 做网站租用数据库网站开发php是什么意思
  • 国际购物网站排名WordPress屏蔽cn国家访问
  • 黑客是如何攻击网站的手机社交网站建设
  • 网站建立后被别人点击要付钱吗深圳市建设注册执业资格中心网站
  • 什么网站可以做高仿怎么做俄语网站
  • 个人网站 域名选择seo推广外包企业
  • 网站建设公司哈工商局注册公司网站
  • wordpress 科技主题seo外链自动群发工具
  • 自己做的网站能备案吗网站建设项目的结论
  • cms网站开发需要学什么部队门户网站建设方案
  • 福州+网站开发怎么用qq相册做网站
  • 旅游网站建设技术有哪些方面wordpress 积分 兑换
  • 浙江省网站备案wordpress 4.5下载
  • 打电话说帮忙做网站网站建设费计什么科目
  • 建站主机网址缩短在线生成器
  • 规模大的企业建站哪个公司的室内设计公司
  • 为什么用花生壳做的网站老刷新wordpress 获取最新文章
  • 网页站点江门做网站软件
  • 专业做网站关键词排名下掉wordpress 多媒体管理系统
  • 二级目录网站怎么做比百度好用的搜索软件