当前位置: 首页 > news >正文

网站建设军成简述建设网站建设的基本流程

网站建设军成,简述建设网站建设的基本流程,笑话网站开发,手表购买网站参考:LViT:语言与视觉Transformer在医学图像分割-CSDN博客 背景 标注成本过高而无法获得足够高质量标记数据医学文本注释被纳入以弥补图像数据的质量缺陷半监督学习:引导生成质量提高的伪标签医学图像中不同区域之间的边界往往是模糊的&…

参考:LViT:语言与视觉Transformer在医学图像分割-CSDN博客

背景

  • 标注成本过高而无法获得足够高质量标记数据
  • 医学文本注释被纳入以弥补图像数据的质量缺陷
  • 半监督学习:引导生成质量提高的伪标签
  • 医学图像中不同区域之间的边界往往是模糊的,边界附近的灰度值差很小,很难提取出高精度的分割边界

贡献

  • 指数伪标签迭代机制(EPI):帮助像素级注意模块(PLAM)----在半监督LViT设置下保持局部图像特征
  • LV (Language-Vision)损失被设计用来直接使用文本信息监督未标记图像的训练
  • 构建了包含x射线和CT图像的三个多模态医学分割数据集(图像+文本)
  • 模型
    • CNN (卷积神经网络):处理输入的图像,提取局部特征。
    • ViT (视觉Transformer):利用Transformer结构,处理从CNN提取的特征,并结合来自文本嵌入的特征。
    • BERT-Embed (BERT嵌入):利用BERT模型对输入的文本进行嵌入,提取语义信息。
  • 如何利用已有的图像-文本信息提高分割性能
    • 使用嵌入层代替文本编码器获得文本特征向量(减少模型中参数的数量)
    • 具有像素级注意模块(PLAM)的混合CNNTransformer结构能够更好地合并文本信息(CNN:局部特征;transformer:全局特征)
  • 如何充分利用文本信息,保证伪标签的质量
    • 伪标签迭代机制(Exponential Pseudo label Iteration mechanism, EPI)
      • 利用标记数据的标签信息和未标记数据的潜在信息
      • EPI间接结合文本信息,以指数移动平均线(EMA)的方式逐步完善伪标签[10]
    • LV (Language-Vision) loss的设计目的是直接利用文本信息来监督未标记医学图像的训练。

模型

双u型结构:u型CNN支路+u型Transformer支路

左面的红方框是Transformer支路,右面的红方框是CNN支路。

  • CNN分支作为信息输入源和预测输出的分割头
  • ViT分支用于图像和文本信息的合并(Transformer处理跨模态信息的能力)
  • u型CNN分支的跳接位置设置一个像素级注意模块(PLAM)----保留图像的局部特征信息

U形CNN分支

  • 每个CNN模块:Conv、BatchNorm(BN)和ReLU激活层
  • Maxpool对图像特征进行下采样(老规矩了) 
  • CNN-ViT交互模块:使用了上采样等方法来对齐来自ViT的特征。重构后的ViT特征通过残差与CNN特征连接,形成CNN-ViT交互特征。
  • 提高局部特征的分割能力:跳接处设计了PLAM,将CNN-ViT交互特征输入到PLAM中,再将交互特征传递到UpCNN模块,逐层向上给出信息。

U形Vit分支

  • 用于合并图像特征和文本特征
  • 第一层DownViT模块接收BERT-Embed输入的文本特征和第一层DownCNN模块输入的图像特征。
  • BERT-Embed的预训练模型是BERT_12_768_12模型,它可以将单个单词转换为768维的单词向量。
  • 跨模态特征合并操作
    • CTBN块还包括Conv层、BatchNorm层和ReLU激活层,用于对齐x_{img}、1和x_{text}的特征维度。
    • ViT由多头自注意组成
    • LN表示归一化层
    • 第2层、第3层和第4层的后续DownViT模块既接收上层DownViT模块的特征,又接收相应层的DownCNN模块的特征

PLAM 

  • 旨在保留图像的局部特征,并进一步融合文本中的语义特征
  • 并行分支:Global Average Pooling (GAP),Global Max Pooling (GMP) 
    • 加法操作:合并具有相似语义的相应通道特征并节省计算
    • 连接操作:更直观地整合特征信息,并有助于保留每个部分的原始特征
  • 使用MLP结构和乘法操作来帮助对齐特征大小
  • PLAM通过增强局部特征来缓解Transformer带来的对全局特征的偏好
  • PLAM采用通道注意和空间注意相结合的方式(我的理解是通道注意力机制:PLAM,空间注意力机制:Transformer)

指数伪标签迭代机制

更新后的伪标签将用于无标签数据的训练,使得无标签数据可以像有标签数据一样为模型提供监督信息。这种方式能够有效利用大量的无标签数据,提高模型的泛化能力和鲁棒性。 

  1. 初始生成

    • 使用有标签数据训练初始模型,生成伪标签。初始模型可以通过图中的Down CNN和Up CNN部分进行训练。
  2. 预测和更新

    • 在每一轮训练中,使用当前模型(例如图中的LViT模型)对无标签数据进行预测,生成新的伪标签。
    • 通过EPI机制更新伪标签,逐步提高其质量。这一过程在图中没有具体表示,但它是数据处理的一部分。
  3. 再训练

    • 使用更新后的伪标签对模型进行再训练。模型结构可以包括图中的Down ViT和Up ViT部分,以及中间的PLAM模块。

LV (Language-Vision) Loss 

  • 结构化的文本信息来形成相应的掩码(对比标签)
  • 计算文本之间的余弦相似度
    • x_{text},p表示伪标签对应的文本特征向量
    • x_{text},c表示对比标签对应的文本特征向量


http://www.yayakq.cn/news/463594/

相关文章:

  • 网站会员收费怎么做网站icp不备案有关系吗
  • 网站制作公司转型数据关于网站建设的请示报告
  • 上海建站模板源码中国建设银行网站是什么
  • 网站推广公司网站WordPress需要什么配置
  • 免费打开的网站家里电脑可以做网站服务器吗
  • 常熟有做网站的网络公司吗安装wordpress时不能选择数据库
  • 扁平风格企业网站源码做单位网站的公司吗
  • 海口网站建设服务公司京东网上购物官方网站
  • 怎么做网站统计平台接广告在哪里接的
  • 广州微网站建设市场网页设计免费网站
  • 昆明网站推广专员网站建设上海网站制作
  • 电脑网站网页设计c#网站开发视频教程 高清
  • 怎么在百度里面找网站国际网站建设的目的
  • 专业设计网站排行榜徽州网站建设
  • 湖南网站seo优化php自己写框架做网站6
  • 餐饮 网站建设定制包装需要多少钱
  • 如何进入微网站网站建设及空间
  • 稻香村网站建设建筑设计专业世界大学排名
  • 鞍山网站制作的网站WordPress软件连接不了网站
  • h5app长春seo排名收费
  • 岗厦网站建设规划和设计一个网站
  • ipv6改造 网站怎么做6汕尾海丰建设规划局网站
  • wordpress 采集 发布北京seo多少钱
  • 望牛墩做网站网站为什么做优化ppt
  • 婚纱摄影网站源码谷歌站长平台
  • 全网vip影视网站一键搭建天河商城型网站建设
  • 做微信首图的网站学校网站班级网页建设制度
  • 网站建设长沙做网站项目实例
  • 电商网站开发平台用什么人开发襄阳营销型网站建设
  • 网站建设模板后台外贸网站建设信息