当前位置: 首页 > news >正文

网站开发与解决技巧蔡甸seo排名公司

网站开发与解决技巧,蔡甸seo排名公司,网站怎么改域名,phpcms 友情链接 网站名称字数Matlab搭建AlexNet实现手写数字识别 个人博客地址 文章目录Matlab搭建AlexNet实现手写数字识别环境内容步骤准备MNIST数据集数据预处理定义网络模型定义训练超参数网络训练和预测代码下载环境 Matlab 2020aWindows10 内容 使用Matlab对MNIST数据集进行预处理,搭建…

Matlab搭建AlexNet实现手写数字识别

个人博客地址

文章目录

  • Matlab搭建AlexNet实现手写数字识别
    • 环境
    • 内容
    • 步骤
      • 准备MNIST数据集
      • 数据预处理
      • 定义网络模型
      • 定义训练超参数
      • 网络训练和预测
    • 代码下载

环境

  • Matlab 2020a
  • Windows10

内容

使用Matlab对MNIST数据集进行预处理,搭建卷积神经网络进行训练,实现识别手写数字的任务。在训练过程中,每隔30个batch输出一次模型在验证集上的准确率和损失值。在训练结束后会输出验证集中每个数字的真实值、网络预测值和判定概率,并给出总的识别准确率。

步骤

准备MNIST数据集

为了方便进行测试,本次只选用500张MNIST数据集,每个数字50张。

下载数据集后并解压,为每个数字创建单独文件夹并将该数字的所有图片放在对应的文件夹下,如图1所示。
数据集下载地址 提取码:af6n
数据分类

手动分类结束后每个文件夹中应有50张图片。

数据预处理

% 加载数据集
imds = imageDatastore(..."./data",...'IncludeSubfolders', true,...'LabelSource','foldernames');

使用imageDatastore加载数据集。第一个参数填写数据集路径。由于本次实验data目录下含有子文件夹所以IncludeSubfolders需要指定为true。LabelSource表示标签来源,这里使用文件夹名字来代表标签。

  ImageDatastore - 属性:Files: {'D:\data\0\0_1.bmp';'D:\data\0\0_10.bmp';'D:\data\0\0_11.bmp'... and 497 more}Folders: {'D:\data'}Labels: [0; 0; 0 ... and 497 more categorical]AlternateFileSystemRoots: {}ReadSize: 1SupportedOutputFormats: [1×5 string]DefaultOutputFormat: "png"ReadFcn: @readDatastoreImage

上面内容为执行imageDatastore后返回变量的属性。可以看出已经成功将数据集读入并对每张图片进行label处理。

由于每个数字有50张图像,因此本次实验每个数字选用30张进行训练,另20张进行验证。使用splitEachLabel进行划分,得到训练集和验证集。

% 数据打乱
imds = shuffle(imds);% 划分训练集和验证集。每一个类别训练集有30个,验证集有20个
[imdsTrain,imdsValidation] = splitEachLabel(imds, 30);

使用shuffle进行数据打乱。得到的imdsTrain和imdsValidation分别有300和200张图片。

% 将训练集与验证集中图像的大小调整成与输入层的大小相同
augimdsTrain = augmentedImageDatastore([28 28],imdsTrain);
augimdsValidation = augmentedImageDatastore([28 28],imdsValidation);

定义网络模型

% 构建alexnet卷积网络 
alexnet = [imageInputLayer([56,56,1], 'Name', 'Input')convolution2dLayer([11,11],48,'Padding','same','Stride',4, 'Name', 'Conv_1')batchNormalizationLayer('Name', 'BN_1')reluLayer('Name', 'Relu_1')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_1')convolution2dLayer([5,5],128,'Padding',2,'Stride',1, 'Name', 'Conv_2')batchNormalizationLayer('Name', 'BN_2')reluLayer('Name', 'Relu_2')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_2')convolution2dLayer([3 3],192,'Padding',1,'Stride',1, 'Name', 'Conv_3')batchNormalizationLayer('Name', 'BN_3')reluLayer('Name', 'Relu_3')convolution2dLayer([3 3],192,'Padding',1,'Stride',1, 'Name', 'Conv_4')batchNormalizationLayer('Name', 'BN_4')reluLayer('Name', 'Relu_4')convolution2dLayer([3 3],128,'Stride',1,'Padding',1, 'Name', 'Conv_5')batchNormalizationLayer('Name', 'BN_5')reluLayer('Name', 'Relu_5')maxPooling2dLayer(3,'Padding','same','Stride',2, 'Name', 'MaxPooling_3')fullyConnectedLayer(4096, 'Name', 'FC_1')reluLayer('Name', 'Relu_6')fullyConnectedLayer(4096, 'Name', 'FC_2')reluLayer('Name', 'Relu_7')fullyConnectedLayer(10, 'Name', 'FC_3')    % 将新的全连接层的输出设置为训练数据中的种类softmaxLayer('Name', 'Softmax')            % 添加新的Softmax层classificationLayer('Name', 'Output') ];   % 添加新的分类层

使用上面的代码即可构建AlexNet模型。

% 对构建的网络进行可视化分析
lgraph = layerGraph(mynet);
analyzeNetwork(lgraph)

在这里插入图片描述

定义训练超参数

% 配置训练选项   
options = trainingOptions('sgdm', ...'InitialLearnRate',0.001, ...    'MaxEpochs',100, ...               'Shuffle','every-epoch', ...'ValidationData',augimdsValidation, ...'ValidationFrequency',30, ...'Verbose',true, ...'Plots','training-progress'); 

本次实验选用sgdm作为优化器,初始学习率设置为0.001,最大迭代次数为100,每次迭代都会打乱数据,每隔30个batch进行一次验证。

网络训练和预测

% 对网络进行训练
net = trainNetwork(augimdsTrain, mynet, options); % 将训练好的网络用于对新的输入图像进行分类,得到预测结果和判定概率
[YPred, err] = classify(net, augimdsValidation);

其中,YPred是存放网络对验证集预测结果的数组,err存放着每个数字的判定概率。

在这里插入图片描述

% 打印真实数字、预测数字、判定概率和准确率
YValidation = imdsValidation.Labels;
for i=1:200
fprintf("真实数字:%d  预测数字:%d", double(YValidation(i,1))-1, double(YPred(i, 1))-1);
fprintf("  判定概率:%f\n", max(err(i, :)));
end

运行上面代码即可打印相关结果。

... ...
真实数字:4  预测数字:4  判定概率:0.814434
真实数字:0  预测数字:0  判定概率:0.657829
真实数字:8  预测数字:8  判定概率:0.874560
真实数字:0  预测数字:0  判定概率:0.988826
真实数字:6  预测数字:6  判定概率:0.970034
... ...
真实数字:5  预测数字:5  判定概率:0.806220
真实数字:4  预测数字:4  判定概率:0.938233
真实数字:7  预测数字:7  判定概率:0.906994
真实数字:7  预测数字:7  判定概率:0.837794
真实数字:6  预测数字:6  判定概率:0.951572
真实数字:6  预测数字:1  判定概率:0.415834
真实数字:5  预测数字:5  判定概率:0.789031
真实数字:2  预测数字:2  判定概率:0.363526
真实数字:7  预测数字:7  判定概率:0.930049准确率:0.880000

代码下载

GitHub下载

http://www.yayakq.cn/news/145500/

相关文章:

  • phpstudy搭建本地网站物业管理系统有哪些模块
  • 石家庄网站建设设计唐山小程序开发公司
  • 杭州网站建设费用价格美食网站要怎么做
  • 36氪网站是用什么做的网站制作设计哪家公司好
  • 网站建设策划怎么谈南京做微网站
  • 云南建设厅网站执业注册云南网站建设小程序开发
  • 应税服务网站开发开票seo网站建设 厦门
  • 直播间网站开发发光字体制作网站
  • 深圳优化网站公司哪家好福州网站建设培训
  • 购物网站多少钱wordpress+站群软件
  • 产品展示网站 源码高职院校高水平专业建设网站
  • 石城网站建设上海做什么赚钱快
  • 减肥瘦身网站模板源码拓普建站推广
  • 创恒建设有限公司网站跨境电商平台有哪些知乎
  • 网站建设策划需要涉及桂林阳朔2天游玩攻略
  • 美食网站 原型 html 下载个人网站的设计师
  • 纯静态网站页面优化百度营销登录平台
  • 用pyton可以做网站吗廊坊做网站外包
  • 株洲定制网站建设网站添加百度统计代码吗
  • 宁乡网站建设济南品牌网站制作便宜
  • 新开神途手游发布网站产品画册设计公司
  • 网站备案查询官网游戏开发软件免费下载
  • 网站前置或专项审批地方网站类型
  • 网站建设 英汇网络苏州工业园区劳动局网站做不了合同
  • 备案的域名可以做盗版电影网站吗widows安装wordpress
  • 东莞网站建设推广哪家好深圳外贸公司集中在哪
  • 贵南县网站建设公司东莞沙田网站建设
  • 网站改版 网站存在问题cms免费建站系统
  • 广州关键词优化外包硬件优化大师
  • 怎样做自己的公司网站做一个人网站需要注意什么