当前位置: 首页 > news >正文

网站建设都需要哪些材料做网站要审核吗

网站建设都需要哪些材料,做网站要审核吗,网站上的报名表链接是怎么做的,手机网站 pc网站模板展示如何使用 LangChain 的 EnsembleRetriever 组合 BM25 和 FAISS 两种检索方法,从而在检索过程中结合关键词匹配和语义相似性搜索的优势。通过这种组合,我们能够在查询时获得更全面的结果。 1. 导入必要的库和模块 首先,我们需要导入所需…

展示如何使用 LangChain 的 EnsembleRetriever 组合 BM25 和 FAISS 两种检索方法,从而在检索过程中结合关键词匹配和语义相似性搜索的优势。通过这种组合,我们能够在查询时获得更全面的结果。

1. 导入必要的库和模块

首先,我们需要导入所需的库和模块。本文使用的工具包括 LangChain 提供的 EnsembleRetrieverBM25RetrieverFAISS、以及 HuggingFace 的嵌入模型。

from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from config import paraphrase_multilingual_MiniLM_L12_v2
2. 准备文档数据

准备了两组文档数据,这些文档分别用于 BM25 和 FAISS 检索器。在实际使用中,这些文档可以是任何你想要检索的文本数据。

# 定义第一组文档,这些文档将用于 BM25 检索器
doc_list_1 = ["这是一个测试句子","温格高赢得了2023环法冠军","波士顿马拉松是历史悠久的一项比赛","何杰即将出战巴黎奥运会的马拉松项目","珍宝将不再赞助温格高所在的车队",
]# 定义第二组文档,这些文档将用于 FAISS 检索器
doc_list_2 = ["波加查擅长陡坡进攻,而温格高则更擅长长坡","温格高的最大摄氧量居然有97!","北京奥运会在2008年8月8日开幕","基普乔格是东京马拉松的金牌得主",
]
3. 初始化 BM25 检索器

BM25 是一种基于词频和逆文档频率(TF-IDF)的传统检索算法,非常适合关键词匹配。我们使用 BM25Retriever.from_texts 方法来创建 BM25 检索器,并为其设置元数据(source: 1),以便区分文档来源。我们还设置了返回的文档数量 k 为 2。

bm25_retriever = BM25Retriever.from_texts(doc_list_1, metadatas=[{"source": 1}] * len(doc_list_1)
)
bm25_retriever.k = 2  # 设置 BM25 检索器返回的文档数量
4. 初始化 FAISS 检索器

FAISS 是一种用于高效向量相似性搜索的工具。我们使用 HuggingFace 的 paraphrase_multilingual_MiniLM_L12_v2 嵌入模型将文档转化为向量,然后将这些向量存储在 FAISS 中。随后,我们使用 FAISS.from_texts 方法创建 FAISS 检索器,并设置返回的文档数量 k 为 2。

embeddings = HuggingFaceEmbeddings(model_name=paraphrase_multilingual_MiniLM_L12_v2)
faiss_vectorstore = FAISS.from_texts(doc_list_2, embeddings, metadatas=[{"source": 2}] * len(doc_list_2)
)
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": 2})
5. 创建组合检索器

为了结合 BM25 和 FAISS 的优势,我们使用 EnsembleRetriever 将这两种检索器组合在一起,并为它们设置相等的权重(0.5 和 0.5)。这种组合策略可以在关键词匹配和语义相似性之间取得平衡。

ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
)
6. 执行查询并输出结果

我们使用组合检索器来查询关键词“温格高”,并输出检索结果。EnsembleRetriever 会结合 BM25 和 FAISS 的结果,返回与查询最相关的文档。随后,我们提取并打印每个文档的 page_content

docs = ensemble_retriever.invoke("温格高")
print(docs)page_contents = [doc.page_content for doc in docs]
print(page_contents)
7. 检索结果分析

运行上述代码后,我们得到了如下结果:

[Document(page_content='珍宝将不再赞助温格高所在的车队', metadata={'source': 1}),Document(page_content='温格高的最大摄氧量居然有97!', metadata={'source': 2}),Document(page_content='温格高赢得了2023环法冠军', metadata={'source': 1}),Document(page_content='波加查擅长陡坡进攻,而温格高则更擅长长坡', metadata={'source': 2})]['珍宝将不再赞助温格高所在的车队', '温格高的最大摄氧量居然有97!', '温格高赢得了2023环法冠军', '波加查擅长陡坡进攻,而温格高则更擅长长坡']

这些结果显示,组合检索器从两个检索器中分别返回了两个文档,并将它们合并。最终结果中既包含了 BM25 检索器基于词频的匹配结果,也包含了 FAISS 检索器基于语义相似性的结果。例如,“珍宝将不再赞助温格高所在的车队”和“温格高的最大摄氧量居然有97!”这两条结果分别来自 BM25 和 FAISS,它们都与查询词“温格高”高度相关。

http://www.yayakq.cn/news/729836/

相关文章:

  • 做投票链接网站西安关键字优化哪家好
  • 有没有什么网站做泰国的东西滕州盛扬网络公司网站建设推广
  • 江油网站建设网站建设流程信息
  • 微信建设银行官方网站台州做微网站
  • 购物网站首页设计5118关键词工具
  • 长春有微信网站一起整的吗装饰设计软件
  • 旅游网站怎么制作阿里云备案个人可以做网站吗
  • 上海市门户网站重庆专业做网站
  • 昌平网站建设哪家强企业如何全面开展品牌工程建设
  • wed网站北京网页设计公司兴田德润优秀
  • 新浪云计算 网站开发如何做专题网站
  • 做导航网站把别人的网址链接过来要经过允许吗天津建设银行官方网站
  • jsp电商购物网站开发微信小程序开发者工具官网下载
  • 网站策划书的内容做同城网站需要哪些手续
  • 中山精品网站建设流程网上找设计师
  • 上海做网站 公司产品推广步骤
  • 网站的申请宁波网站建设最好
  • 免费建英文网站网站客户需求分析
  • 网站的排版包括什么seo专员简历
  • 手机自建网站网站建设费用包括
  • 物流如何做网站团购网站建设
  • 东莞如何编写网站建设宁波高新区做网站的公司
  • 网站后端怎么做wordpress查看
  • 网站编辑知识优化seo公司哪家好
  • 网站管理助手ftp红花岗区建设局网站
  • 永川区门户网站建设轨迹有什么推广软件
  • 上海网站开发与设国外永久免费crm系统
  • 企业网站建设方案策划书云南app开发公司哪家好
  • 网站建设确认报告最新公司名字大全
  • 优化优化沈阳网络优化公司哪家好