当前位置: 首页 > news >正文

图片网站建站系统科技软件公司网站模板

图片网站建站系统,科技软件公司网站模板,网站建设顾问,和外国人做古玩生意的网站基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练 参考地址:https://aistudio.baidu.com/projectdetail/8271882 基于python35paddle120env环境 预测可视化结果: (一)安装环境: 先上传本地下载的源代码Pad…

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

参考地址:https://aistudio.baidu.com/projectdetail/8271882

基于python35+paddle120+env环境
预测可视化结果:
在这里插入图片描述

(一)安装环境:
先上传本地下载的源代码PaddleRS-develop.zip
解压PaddleRS-develop.zip到目录PaddleRS
然后分别执行下面安装命令!pip install

!unzip -q /home/aistudio/data/data191076/PaddleRS-develop.zip && mv PaddleRS-develop PaddleRS
!pip install matplotlib==3.4 scikit-image pycocotools -t /home/aistudio/external-libraries
!pip install  opencv-contrib-python -t /home/aistudio/external-libraries
!pip install -r PaddleRS/requirements.txt  -t /home/aistudio/external-libraries
!pip install -e PaddleRS/  -t /home/aistudio/external-libraries
!pip install paddleslim==2.6.0  -t /home/aistudio/external-libraries

添加环境组件

# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')

(二)数据预处理tran_dataPre.py

%run tran_dataPre.py

(三)开始模型训练

%run trans.py

(四) tran_dataPre.py内容如下所示:

#先解压数据集
#!unzip -oq -d /home/aistudio/massroad /home/aistudio/data/data56961/mass_road.zip# 划分训练集/验证集/测试集,并生成文件名列表import random
import os.path as osp
from os import listdirimport cv2# 随机数生成器种子
RNG_SEED = 56961
# 调节此参数控制训练集数据的占比
TRAIN_RATIO = 0.9
# 数据集路径
DATA_DIR = '/home/aistudio/massroad'# 分割类别
CLASSES = ('background','road',
)def write_rel_paths(phase, names, out_dir, prefix):"""将文件相对路径存储在txt格式文件中"""with open(osp.join(out_dir, phase+'.txt'), 'w') as f:for name in names:f.write(' '.join([osp.join(prefix, 'input', name),osp.join(prefix, 'output', name)]))f.write('\n')random.seed(RNG_SEED)train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')
train_names = listdir(osp.join(DATA_DIR, train_prefix, 'output'))
train_names = list(filter(lambda n: n.endswith('.png'), train_names))
test_names = listdir(osp.join(DATA_DIR, test_prefix, 'output'))
test_names = list(filter(lambda n: n.endswith('.png'), test_names))
# 对文件名进行排序,以确保多次运行结果一致
train_names.sort()
test_names.sort()
random.shuffle(train_names)
len_train = int(len(train_names)*TRAIN_RATIO)
write_rel_paths('train', train_names[:len_train], DATA_DIR, train_prefix)
write_rel_paths('val', train_names[len_train:], DATA_DIR, train_prefix)
write_rel_paths('test', test_names, DATA_DIR, test_prefix)# 写入类别信息
with open(osp.join(DATA_DIR, 'labels.txt'), 'w') as f:for cls in CLASSES:f.write(cls+'\n')print("数据集划分已完成。")# 将GT中的255改写为1,便于训练import os.path as osp
from glob import globimport cv2
from tqdm import tqdm# 数据集路径
# DATA_DIR = '/home/aistudio/massroad'train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')train_paths = glob(osp.join(DATA_DIR, train_prefix, 'output', '*.png'))
test_paths = glob(osp.join(DATA_DIR, test_prefix, 'output', '*.png'))
for path in tqdm(train_paths+test_paths):im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)im[im>0] = 1# 原地改写cv2.imwrite(path, im)

(五) trans.py内容如下所示:

# 导入需要用到的库import random
import os.path as ospimport cv2
import numpy as np
import paddle
import paddlers as pdrs
from paddlers import transforms as T
from matplotlib import pyplot as plt
from PIL import Imageimport sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')# 定义全局变量# 随机种子
SEED = 56961
# 数据集存放目录
DATA_DIR = '/home/aistudio/massroad/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = '/home/aistudio/massroad/train.txt'
# 验证集`file_list`文件路径
VAL_FILE_LIST_PATH = '/home/aistudio/massroad/val.txt'
# 测试集`file_list`文件路径
TEST_FILE_LIST_PATH = '/home/aistudio/massroad/test.txt'
# 数据集类别信息文件路径
LABEL_LIST_PATH = '/home/aistudio/massroad/labels.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR =  '/home/aistudio/exp/'# 固定随机种子,尽可能使实验结果可复现random.seed(SEED)
np.random.seed(SEED)
paddle.seed(SEED)# 构建数据集# 定义训练和验证时使用的数据变换(数据增强、预处理等)
train_transforms = T.Compose([T.DecodeImg(),# 随机裁剪T.RandomCrop(crop_size=512),# 以50%的概率实施随机水平翻转T.RandomHorizontalFlip(prob=0.5),# 以50%的概率实施随机垂直翻转T.RandomVerticalFlip(prob=0.5),# 将数据归一化到[-1,1]T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('train')
])eval_transforms = T.Compose([T.DecodeImg(),T.Resize(target_size=1500),# 验证阶段与训练阶段的数据归一化方式必须相同T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('eval')
])# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TRAIN_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=train_transforms,num_workers=4,shuffle=True
)val_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=VAL_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 构建DeepLab V3+模型,使用ResNet-50作为backbone
model = pdrs.tasks.seg.DeepLabV3P(in_channels=3,num_classes=len(train_dataset.labels),backbone='ResNet50_vd'
)
model.initialize_net(pretrain_weights='CITYSCAPES',save_dir=osp.join(EXP_DIR, 'pretrain'),resume_checkpoint=None,is_backbone_weights=False
)# 构建优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.net.parameters()
)# 执行模型训练
model.train(num_epochs=100,train_dataset=train_dataset,train_batch_size=8,eval_dataset=val_dataset,optimizer=optimizer,save_interval_epochs=10,# 每多少次迭代记录一次日志log_interval_steps=30,save_dir=EXP_DIR,# 是否使用early stopping策略,当精度不再改善时提前终止训练early_stop=False,# 是否启用VisualDL日志功能use_vdl=True,# 指定从某个检查点继续训练resume_checkpoint=None
)

(六)训练生成过程信息

Output exceeds the size limit. Open the full output data in a text editor
2024-09-05 14:16:51 [INFO]	Loading pretrained model from /home/aistudio/exp/pretrain/model.pdparams
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.weight do not match. (pretrained: [19, 256, 1, 1] vs actual: [2, 256, 1, 1])
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.bias do not match. (pretrained: [19] vs actual: [2])
2024-09-05 14:16:53 [INFO]	There are 358/360 variables loaded into DeepLabV3P.
2024-09-05 14:17:46 [INFO]	[TRAIN] Epoch=1/100, Step=30/90, loss=0.133503, lr=0.001000, time_each_step=1.77s, eta=4:24:32
2024-09-05 14:18:25 [INFO]	[TRAIN] Epoch=1/100, Step=60/90, loss=0.181917, lr=0.001000, time_each_step=1.31s, eta=3:14:53
2024-09-05 14:19:02 [INFO]	[TRAIN] Epoch=1/100, Step=90/90, loss=0.112567, lr=0.001000, time_each_step=1.22s, eta=3:2:6
2024-09-05 14:19:03 [INFO]	[TRAIN] Epoch 1 finished, loss=0.15933047160506247 .
2024-09-05 14:19:44 [INFO]	[TRAIN] Epoch=2/100, Step=30/90, loss=0.141528, lr=0.001000, time_each_step=1.36s, eta=3:22:2
2024-09-05 14:20:20 [INFO]	[TRAIN] Epoch=2/100, Step=60/90, loss=0.165187, lr=0.001000, time_each_step=1.22s, eta=3:0:42
2024-09-05 14:20:57 [INFO]	[TRAIN] Epoch=2/100, Step=90/90, loss=0.145009, lr=0.001000, time_each_step=1.22s, eta=2:59:1
2024-09-05 14:20:58 [INFO]	[TRAIN] Epoch 2 finished, loss=0.1168842613697052 .
2024-09-05 14:21:39 [INFO]	[TRAIN] Epoch=3/100, Step=30/90, loss=0.126603, lr=0.001000, time_each_step=1.38s, eta=3:22:13
2024-09-05 14:22:16 [INFO]	[TRAIN] Epoch=3/100, Step=60/90, loss=0.117296, lr=0.001000, time_each_step=1.22s, eta=2:58:14
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch=3/100, Step=90/90, loss=0.072859, lr=0.001000, time_each_step=1.23s, eta=2:58:46
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch 3 finished, loss=0.10787189056475957 .
2024-09-05 14:23:34 [INFO]	[TRAIN] Epoch=4/100, Step=30/90, loss=0.081685, lr=0.001000, time_each_step=1.37s, eta=3:18:39
2024-09-05 14:24:11 [INFO]	[TRAIN] Epoch=4/100, Step=60/90, loss=0.087735, lr=0.001000, time_each_step=1.23s, eta=2:57:28
2024-09-05 14:24:48 [INFO]	[TRAIN] Epoch=4/100, Step=90/90, loss=0.084795, lr=0.001000, time_each_step=1.22s, eta=2:55:44
2024-09-05 14:24:49 [INFO]	[TRAIN] Epoch 4 finished, loss=0.10476481277081702 .
2024-09-05 14:25:30 [INFO]	[TRAIN] Epoch=5/100, Step=30/90, loss=0.098625, lr=0.001000, time_each_step=1.37s, eta=3:16:59
2024-09-05 14:26:07 [INFO]	[TRAIN] Epoch=5/100, Step=60/90, loss=0.078188, lr=0.001000, time_each_step=1.24s, eta=2:57:12
2024-09-05 14:26:43 [INFO]	[TRAIN] Epoch=5/100, Step=90/90, loss=0.098015, lr=0.001000, time_each_step=1.21s, eta=2:52:11
2024-09-05 14:26:44 [INFO]	[TRAIN] Epoch 5 finished, loss=0.10311256903741095 .
2024-09-05 14:27:25 [INFO]	[TRAIN] Epoch=6/100, Step=30/90, loss=0.109136, lr=0.001000, time_each_step=1.38s, eta=3:16:8
...
2024-09-05 15:39:38 [INFO]	Start to evaluate (total_samples=81, total_steps=81)...
2024-09-05 15:40:14 [INFO]	[EVAL] Finished, Epoch=40, miou=0.716638, category_iou=[0.96831487 0.46496069], oacc=0.969164, category_acc=[0.97447995 0.81316509], kappa=0.619485, category_F1-score=[0.98390241 0.63477565] .
2024-09-05 15:40:14 [INFO]	Current evaluated best model on eval_dataset is epoch_10, miou=0.7255623401044613
2024-09-05 15:40:18 [INFO]	Model saved in /home/aistudio/exp/epoch_40.

(七) 测试集预测结果:

# 构建测试集
test_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TEST_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 为模型加载历史最佳权重
state_dict = paddle.load(osp.join(EXP_DIR, 'best_model/model.pdparams'))
model.net.set_state_dict(state_dict)# 执行测试
test_result = model.evaluate(test_dataset)
print("测试集上指标:IoU为{:.2f},Acc为{:.2f},Kappa系数为{:.2f}, F1为{:.2f}".format(test_result['category_iou'][1], test_result['category_acc'][1],test_result['kappa'],test_result['category_F1-score'][1])
)
2024-09-05 20:07:40 [INFO]	13 samples in file /home/aistudio/massroad/test.txt
2024-09-05 20:07:41 [INFO]	Start to evaluate (total_samples=13, total_steps=13)...
测试集上指标:IoU为0.47,Acc为0.82,Kappa系数为0.62, F1为0.64

(八)预测结果可视化情况:

# 预测结果可视化
# 重复运行本单元可以查看不同结果def read_image(path):im = cv2.imread(path)return im[...,::-1]def show_images_in_row(ims, fig, title='', quantize=False):n = len(ims)fig.suptitle(title)axs = fig.subplots(nrows=1, ncols=n)for idx, (im, ax) in enumerate(zip(ims, axs)):# 去掉刻度线和边框ax.spines['top'].set_visible(False)ax.spines['right'].set_visible(False)ax.spines['bottom'].set_visible(False)ax.spines['left'].set_visible(False)ax.get_xaxis().set_ticks([])ax.get_yaxis().set_ticks([])if isinstance(im, str):im = read_image(im)if quantize:im = (im*255).astype('uint8')if im.ndim == 2:im = np.tile(im[...,np.newaxis], [1,1,3])ax.imshow(im)# 需要展示的样本个数
num_imgs_to_show = 4
# 随机抽取样本
chosen_indices = random.choices(range(len(test_dataset)), k=num_imgs_to_show)# 参考 https://stackoverflow.com/a/68209152
fig = plt.figure(constrained_layout=True)
fig.suptitle("Test Results")subfigs = fig.subfigures(nrows=3, ncols=1)# 读取输入影像并显示
im_paths = [test_dataset.file_list[idx]['image'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[0], title='Image')# 获取模型预测输出
with paddle.no_grad():model.net.eval()preds = []for idx in chosen_indices:input, mask = test_dataset[idx]input = paddle.to_tensor(input["image"]).unsqueeze(0)logits, *_ = model.net(input)pred = paddle.argmax(logits[0], axis=0)preds.append(pred.numpy())
show_images_in_row(preds, subfigs[1], title='Pred', quantize=True)# 读取真值标签并显示
im_paths = [test_dataset.file_list[idx]['mask'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[2], title='GT', quantize=True)# 渲染结果
fig.canvas.draw()
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())

在这里插入图片描述
(九) 导出静态模型
训练后保存的模型为动态模型,布署发布模型为静态模型,因此需要导出操作

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_modelmodel_path =  './exp/best_model'img_14="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-14.png"
img_10="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-10.png"#save_dir="./models/road_infer_model_100"
save_dir="./models/road_infer_model_100_custom"# export model OK
# Set environment variables
os.environ['PADDLEX_EXPORT_STAGE'] = 'True'
os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'# Load model from directory
model = load_model(model_path)#fixed_input_shape = None
#fixed_input_shape = [1500,1500]
fixed_input_shape = [17761,25006]      #[w,h]# Do dynamic-to-static cast   动态到静态的转换
# XXX: Invoke a protected (single underscore) method outside of subclasses.
model.export_inference_model(save_dir, fixed_input_shape)

(十) 预测单张图片代码

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_model# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')img_14="./massroad/road_segmentation_ideal/testing/input/img-14.png"
img_10="./massroad/road_segmentation_ideal/testing/input/img-10.png"
img_5="./massroad/road_segmentation_ideal/testing/input/img-5.png"customImg="./customImage/DeepLearning_Image.png"    #file tif to png #model_dir="./models/road_infer_model_100"
#model_dir="./models/road_infer_model_100_None"
model_dir="./models/road_infer_model_100_custom"#model = pdrs.deploy.Predictor(model_dir)
model = pdrs.deploy.Predictor(model_dir,use_gpu=True)# 读取输入影像并显示
im_paths = [customImg]
im_lis = []
for name in im_paths:print(name)img = cv2.imread(name)      print(img.shape) #img = paddle.to_tensor(img) #.unsqueeze(0)   #标量输入im_lis.append(img)
# 获取模型预测输出img_file=img_10
preds = []
results = model.predict(im_lis)
#print(results)label_map=results[0]["label_map"]
#print(label_map)
label_map[label_map>0] = 255
cv2.imwrite('./outImage/label_map_custom.png', label_map)score_map=results[0]["score_map"]
#cv2.imwrite('./outImage/score_map.png', score_map[0])
print(score_map)print("预测完成")

本blog地址:https://blog.csdn.net/hsg77

http://www.yayakq.cn/news/212711/

相关文章:

  • 口碑好的网站建设哪家好建设银行河北省分行官方网站
  • 廊坊百度网站排名网站 chat now怎么做
  • 网站服务器哪家好些叫人做网站要注意
  • 苏州企业网站建jsp租房网站开发
  • 样式表一般用于大型网站何如做外贸网站推网
  • 网站建设需要会代码吗设计方案评价
  • 宁海网站建设专门做预言的网站
  • 帮人恶意点击网站怎么免费制作企业网站
  • 可以免费打开网站的软件下载专业网站建设技术
  • 书店建设网站的能力临时网站搭建
  • 网站关键字如何选择seo是做什么工作内容
  • 你好南京网站分销系统开发多少钱
  • 图书网站开发的实践意义产品开发怎么写
  • 创建公司网站用什么软件服装 多语言 网站源码
  • 申请域名后可以做自己的网站吗可以直接进入的网站正能量大豆网
  • 设计师网上接单被骗搜索排名优化策划
  • 多城市分站站群cms云南省和城乡建设厅网站
  • 企业网站设计建设服务器网站网络营销方案
  • 做化妆品注册和注册的网站有哪些wap网站开发流程
  • html5 手机网站 教程郴州网课
  • 百度资源站长平台网站建设H5 源码
  • 网站地图怎么做_网页升级访问未满18岁请离开
  • 郑州航空港区建设局网站怎么免费做网站视频教学
  • 北京建设银行网站首页有没有专业做网站的
  • 做五金找订单查什么网站网站运营繁忙
  • 网站数据库 mysql手机制作图片
  • 装修公司前十强排名榜seo搜索优化是什么意思
  • 行业网站建设价格大型门户网站建设企业
  • 厦门知名做企业网站设计的公司新冠最新本土病例
  • 移动商务网站开发课程盐城做百度网站