当前位置: 首页 > news >正文

网站验收网站备案怎么那么麻烦

网站验收,网站备案怎么那么麻烦,wordpress数据库位置,做网站公司 上海目录 ResNet总结 ResNet代码实现ResNet的梯度计算 ResNet 总结 残差块使得很深的网络更加容易训练 甚至可以训练一千层的网络 残差网络对随后的深层神经网络设计产生了深远影响,无论是卷积类网络还是全连接类网络。 ResNet代码实现 导入相关库 import torch fro…

目录

    • ResNet
      • 总结
    • ResNet代码实现
    • ResNet的梯度计算

ResNet

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

  • 残差块使得很深的网络更加容易训练
    • 甚至可以训练一千层的网络
  • 残差网络对随后的深层神经网络设计产生了深远影响,无论是卷积类网络还是全连接类网络。

ResNet代码实现

  1. 导入相关库
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
  1. 定义网络模型
# 定义基本残差块
class Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)if use_1x1conv:  # 是否需要降低空间分辨率,增加通道维维度self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)self.relu = nn.ReLU(inplace=True)# inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出。# 产生的计算结果不会有影响。利用in-place计算可以节省内(显)存,同时还可以省去反复申请和释放内存的时间。但是会对原变量覆盖,只要不带来错误就用。def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

查看普通残差块:输入和输出形状一致

blk= Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在这里插入图片描述

查看升维残差块:增加输出通道的同时,减半输入的高和宽

blk = Residual(3, 6, use_1x1conv=True, strides=2)
X =torch.rand(4, 3, 6, 6)
Y =blk(X)
Y.shape

在这里插入图片描述

# 定义resnet块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):"""定义大的残差块(5块)"""blk = []for i in range(num_residuals):if i == 0 and not first_block:# 除了一个块,每个块的一个升维残差块,要先缩小输入特征图的尺寸,增大通道数blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))else:# 第一块或者每块中用于提取特征的堆叠的基本残差块,输入和输出的形状一致blk.append(Residual(num_channels, num_channels))return blk
# 定义ResNet网络模型
b1 = nn.Sequential(  # 输入形状:[1, 1, 224, 224]nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),   # (224 - 7 + 2*3)/2 + 1 = 112nn.BatchNorm2d(64), nn.ReLU(),  # [1, 64, 112, 112]nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # [1, 64, 56. 56]
)
b2= nn.Sequential(# *列表:表示解包操作,把列表元素顺序展开# *[1, 3, 2 , 5, 4] = 1, 3, 2, 5, 4*resnet_block(64, 64, 2, first_block=True)  # [1, 64, 56, 56]、[1, 64, 56, 56]
)
b3 = nn.Sequential(*resnet_block(64, 128, 2)  # [1, 128, 28, 28]、[1, 128, 28, 28]
)
b4 = nn.Sequential(*resnet_block(128, 256, 2)  # [1, 256, 14, 14]、[1, 256, 14, 14]
)
b5 = nn.Sequential(*resnet_block(256, 512, 2)  # [1, 512, 7, 7]、[1, 512, 7, 7]
)
net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1, 1)),  # [1, 512, 1, 1]nn.Flatten(),  # [1, 512*1*1]= [1, 512]nn.Linear(512, 10)  # [1, 512] --> [1, 10]
)
  1. 查看网络模型
X = torch.randn(1, 1, 224, 224)
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述

  1. 加载数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
  1. 训练模型
lr, num_epochs = 0.05, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述
在这里插入图片描述

ResNet的梯度计算

在这里插入图片描述
QA

  • 学习率也可以让靠近输出(标签)的小一些,靠近输入(输入)的大一些,来缓解梯度消失的问题
http://www.yayakq.cn/news/542642/

相关文章:

  • 我的世界做视频封面的网站wordpress移动端可视化
  • 做网站的公司那家好。长沙seo全网营销
  • 厦门亚龙网站建设淄博有做互联网广告的公司
  • 找网络公司做网站需要注意的 天堂资源官网在线资源
  • 关于排版的网站15年做哪些网站致富
  • 预约做家庭清洁的网站做最精彩绳艺网站
  • 山东建设厅官方网站李兴军企业制作宣传片
  • 装饰公司做网站网络营销是什么意思啊
  • 做的比较好旅游网站wordpress主题helpdesk
  • 网站建设0基础如何建设一个小型网站
  • 微信h5商城网站网站建设公司i
  • 建设网站的总结宁波seo托管公司
  • 网站正在建设中的企业形象
  • 天长企业网站制作汕头站扩建效果图
  • 网上做兼职网站正规柏乡网站建设
  • 北京建设大学官方网站徐州峰华网架公司
  • 网站建设灬金手指下拉十五做网站过程视频
  • 一个空间2个网站百度域名对应的ip地址
  • django做网站比较容易网站建设有什么理论依据
  • 做网站如何做视频上海市场监督管理局网站
  • 电子商务与网站建设策划书做网站要有数据库么
  • 开个捕鱼网站怎么做怎么建设一个购物网站
  • 建网站的公司一建延期最新消息2022
  • 网站服务器租用4t多少钱一年啊南通网站公司网站
  • 万网租空间 网站wordpress华为
  • 建设网站是什么企业网站建设费用属管理费用吗
  • 漳州seo网站快速排名梅州建站
  • 机关网站内容建设工作总结哪个网络公司做网站好点
  • 网站开发如何模块化中国网评中国网评
  • js做音乐网站合肥新闻 今天 最新消息