当前位置: 首页 > news >正文

重庆做网站建设公司哪家好游戏源代码交易平台

重庆做网站建设公司哪家好,游戏源代码交易平台,广州专门做seo的公司,带产品展示的个人网站模板YOLOv5-第Y2周:训练自己的数据集 YOLOv5-第Y2周:训练自己的数据集一、前言二、我的环境三、准备数据集四、运行 split_train_val.py 文件五、生成 train.txt、test.txt、val.txt 文件六、创建ab.yaml文件七、开始使用自己的数据集训练八、总结 YOLOv5-第…

YOLOv5-第Y2周:训练自己的数据集

  • YOLOv5-第Y2周:训练自己的数据集
    • 一、前言
    • 二、我的环境
    • 三、准备数据集
    • 四、运行 split_train_val.py 文件
    • 五、生成 train.txt、test.txt、val.txt 文件
    • 六、创建ab.yaml文件
    • 七、开始使用自己的数据集训练
    • 八、总结

YOLOv5-第Y2周:训练自己的数据集

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.5
  • 编译器:colab在线编译
  • 深度学习环境:PyTorch

三、准备数据集

文件夹目录结构:

🍦主目录:
paper_ data (创建个文件夹,将数据放到这里)
Annotations (放置我们的.xm文件)
images (放置图片文件)
ImageSets:
Main (会在该文件夹内自动生成train.txt、 val.txt、 test.txt和trainval.txt四个文件,
存放训练集、验证集、测试集图片的名字)

在这里插入图片描述

四、运行 split_train_val.py 文件

ImageSets文件夹下面有个Main子文件夹,其下面存放了 train.txt、val.txt、test.txt和 trainval.txt四个文件,它们是通过split_train_val.py文件来生成的。

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 14 19:08:01 2023@author: admin
"""import os
import random
import argparseparser = argparse.ArgumentParser()#xml文件的地址,根据自己的数据进行修改,xml一班存放在Annotation下
parser.add_argument('--xml_path', default = 'C:\YOLOv5\yolov5-master\paper_data\Annotations', type = str, help = 'input xml label path')#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default = 'C:\YOLOv5\yolov5-master\paper_data\ImageSets/Main', type = str, help = 'output txt label path')opt = parser.parse_args()trainval_percent = 0.9
train_percent = 8 / 9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * train_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行 split_train_val.py 文件后你将得至train.txt、val.txt、test.txt 和 trainval.txt 四 个文件,结果如下:
在这里插入图片描述

五、生成 train.txt、test.txt、val.txt 文件

编写voc_label.py文件

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["pineapple"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('./annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('./labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('./labels/'):os.makedirs('./labels/')image_ids = open('./ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('./%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.png\n' % (image_id)) # 注意你的图片格式,如果是.jpg记得修改convert_annotation(image_id)list_file.close()

运行voc_label.py文件,你将会得到train.txt、test.txt、val.txt三个文件。

在这里插入图片描述

六、创建ab.yaml文件

本周开始进入yolov5的章节的学习。 ab.yaml文件内容如下:
在这里插入图片描述

七、开始使用自己的数据集训练

python train.py --img 900 --batch 2 --epoch 5 --data paper_data/ab.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt

在这里插入图片描述

文件报错,这里还不知道是什么原因。后续查找修改Bug

八、总结

通过Y1和Y2的学习,学会了yolov5的环境配置以及用自己的数据集训练模型。接下来就是查阅资料,解决Bug。

http://www.yayakq.cn/news/695995/

相关文章:

  • 做菠菜网站判多久wordpress如何链接
  • 找公司网站建设3无锡seo网站建设费用
  • 精湛的佛山网站设计网站维护是什么
  • 湛江企业建站程序扫黄打非网站建设
  • 沈阳商城网站开发网络营销方式文献
  • 武穴市网站两学一做品牌做网站
  • 灰色行业推广平台网站上海企业公示信息查询系统
  • 在线做插画的网站html仿百度页面代码
  • 广州企业网站模板购买正规网站制作公司哪里有
  • 设计网站最重要的是要有良好的网站建设宣传视频教程
  • 新公司怎么建立自己的网站京东购物官网免费下载
  • 网站开发建设成本游戏秒玩网站
  • 网站后期技术维护住建部建设工程施工合同范本
  • 免费自助建站哪个平台好重庆建筑工程
  • 漂亮的网站框架工作手机
  • 微信菜单栏那些网站怎么做淘客网站app建设
  • 网站怎么访问自己做的网页广东省住建厅官方网站
  • 网站服务公司哪个好莆田外贸网站建设
  • 域名买完了网站建设我的家乡湛江网站设计
  • 腾讯网站建设费用北京网页设计公司网站
  • 北京市住房城乡建设官方网站招商网站大全
  • linux 网站建设如何推广一款app
  • 花店做网单的网站桂林临桂区建设局网站
  • 营销型外贸网站甘肃省广电网络公司网站
  • 网站阶段推广计划拼多多无货源网店怎么开
  • 国内开源网站wordpress插件 数据库
  • 网站如何制作ui设计师未来发展方向
  • 网站建设长期待摊费用页面设计在哪里找
  • 企业顺德网站建设做定制校服的网站
  • seo网站模板下载黄浦网站制作