当前位置: 首页 > news >正文

黄浦区网站建设公司湛江市seo网站设计报价

黄浦区网站建设公司,湛江市seo网站设计报价,全国二级建造师注册信息查询网站,手机端网站制作大家好,本文将介绍一种为深度学习应用提供速度、效率、跨平台兼容性、用户友好性和安全性的新工具。 Safetensors简介 Hugging Face开发了一种名为Safetensors的新序列化格式,旨在简化和精简大型复杂张量的存储和加载。张量是深度学习中使用的主要数据…

大家好,本文将介绍一种为深度学习应用提供速度、效率、跨平台兼容性、用户友好性和安全性的新工具。

Safetensors简介

Hugging Face开发了一种名为Safetensors的新序列化格式,旨在简化和精简大型复杂张量的存储和加载。张量是深度学习中使用的主要数据结构,其大小会给效率带来挑战。

Safetensors结合使用高效的序列化和压缩算法来减少大型张量的大小,使其比pickle等其他序列化格式更快、更高效。这意味着,与传统PyTorch序列化格式pytorch_model.binmodel.safetensors相比,Safetensors在CPU上的速度快76.6倍,在GPU上的速度快2倍。

 使用Safetensors的好处

Safetensors具有简单直观的API,可以在Python中序列化和反序列化张量。这意味着开发人员可以专注于搭建深度学习模型,而不必在序列化和反序列化上花费时间。

可以用Python进行序列化,并方便地使用各种编程语言和平台(如C++、Java和JavaScript)加载生成的文件,这样就可以实现在不同的编程环境中无缝共享模型。

Safetensors针对速度进行了优化,可以高效处理大型张量的序列化和反序列化,因此它是使用大型语言模型的应用程序的绝佳选择。

它混合使用了有效的序列化和压缩算法,以减小大型张量的大小,与其他序列化格式(如pickle)相比,性能更快、更高效。

为了防止序列化张量在存储或传输过程中出现损坏,Safetensors使用了校验和机制。这保证了额外的安全性,确保存储在Safetensors中的所有数据都准确可靠。此外,它还能防止DOS攻击。

在使用多个节点或GPU的分布式环境中工作时,只在每个模型上加载部分张量是很有帮助的。BLOOM利用这种格式在8个 GPU上加载模型仅需45秒,而普通PyTorch加权则需要10分钟。

使用Safetensors

在本节中我们将介绍safetensors API,以及如何保存和加载张量文件。可以使用pip管理器安装safetensors

pip install safetensors

本文将使用Torch共享张量中的示例来搭建一个简单的神经网络,并使用PyTorch的safetensors.torch API保存模型。

from torch import nnclass Model(nn.Module):def __init__(self):super().__init__()self.a = nn.Linear(100, 100)self.b = self.adef forward(self, x):return self.b(self.a(x))model = Model()
print(model.state_dict())

正如所看到的,已经成功创建了模型。

OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

现在我们将通过提供model对象和文件名来保存模型,然后把保存的文件加载到使用nn.Module创建的model对象中。

from safetensors.torch import load_model, save_modelsave_model(model, "model.safetensors")load_model(model, "model.safetensors")
print(model.state_dict())
OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

在第二个示例中,我们将尝试保存使用torch.zeros创建的张量,为此将使用save_file函数。

import torch
from safetensors.torch import save_file, load_filetensors = {"weight1": torch.zeros((1024, 1024)),"weight2": torch.zeros((1024, 1024))
}
save_file(tensors, "new_model.safetensors")

为了加载张量,我们将使用load_file函数。

load_file("new_model.safetensors")
{'weight1': tensor([[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],...,[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.]]),'weight2': tensor([[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],...,[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.],[0., 0., 0.,  ..., 0., 0., 0.]])}

Safetensors API适用于Pytorch、Tensorflow、PaddlePaddle、Flax和Numpy,可以通过阅读Safetensors文档来了解它。

简而言之,Safetensors是一种存储深度学习应用中使用的大型张量的新方法。与其他技术相比,它具有更快、更高效和用户友好的特点,此外它还能确保数据的保密性和安全性,同时支持各种编程语言和平台。通过使用Safetensors,机器学习工程师可以优化时间,专注于开发更优秀的模型。

强烈推荐在项目中使用Safetensors,许多顶级AI公司,如Hugging Face、EleutherAI和StabilityAI,都在他们的项目中使用了Safetensors。

http://www.yayakq.cn/news/884755/

相关文章:

  • 艺术类网站模板如何做好线上推广
  • 现在做网站公司建筑工程网官网平台
  • 有哪些网站制作公司北京住建局
  • 建设通相似的网站上海知名的网站建设公
  • 网站界面风格设计本地网站建设DW
  • 网站专题二级页怎么做500套wordpress模板下载
  • 咨询聊城做网站做一个租房卖房的网站怎么做
  • 广东专业移动网站建设哪家好建工作室网站
  • 手机链接ppt在哪个网站做济南网站免费制作
  • 腾讯云学生怎么做网站的手工制作大全废物利用
  • 响应式网站建设推荐乐云践新wordpress批量上传图片
  • 手机销售网站怎么做的做网站我网站找第三方支付
  • 建设网站的项目策划书中国八冶建设集团网站
  • 网站图片加alt电商网站项目经验介绍ppt模板
  • 陕西省中小学教师培训网站钢管公司网站建设
  • 杨浦做网站tomcat部署wordpress
  • 网站优化与推广wordpress获取分类列表和分页
  • 东莞seo建站推广外贸推广网站哪家
  • 网站开发设计南邮wordpress 显示指定文章标题
  • 东至网站定制景区网站建设的好处
  • 家教网站建设做好门户网站建设
  • 网站建设whjzyh秀屿网站建设
  • 网站设计与网页制作模板wordpress 短代码嵌套
  • 做网站 广州05网全部答案数学
  • vps怎么上传网站程序wordpress修改管理员密码
  • 做请柬网站中国建设银行网站e路
  • 网站的总体方案与功能设计网站索引怎么做
  • 东莞市网站建设分站企业营销自己的网站
  • 网站设计开发工程师wordpress 允许用户上传图片
  • 怎么做繁体字网站建设银行网上营业厅