当前位置: 首页 > news >正文

汽车网站cms焊工培训心得体会

汽车网站cms,焊工培训心得体会,网站备案导致网站被k,国内最大的网站制作公司数据分析是现代企业和科研中不可或缺的一部分,而统计学是数据分析的基石。在本篇博客中,我们将介绍统计学的基础知识,涵盖数据类型、描述性统计(集中趋势、离散程度和偏差程度),并通过代码实例加以说明。 …

数据分析是现代企业和科研中不可或缺的一部分,而统计学是数据分析的基石。在本篇博客中,我们将介绍统计学的基础知识,涵盖数据类型、描述性统计(集中趋势、离散程度和偏差程度),并通过代码实例加以说明。

一、数据三大类型

在统计分析中,数据通常分为三大类型:分类数据、顺序数据和数值数据。

1. 分类数据

分类数据是指那些可以分为不同类别的数据,但这些类别之间没有内在顺序。例如:性别(男、女)、颜色(红、绿、蓝)。

2. 顺序数据

顺序数据是指可以排序的数据,但不同类别之间的差异不能被量化。例如:评级(好、中、差),满意度(非常满意、满意、不满意)。

3. 数值数据

数值数据是指可以量化并具有明确意义的数字数据。这类数据可以进一步分为离散数据(如人口数量)和连续数据(如身高、体重)。

二、描述性统计 - 集中趋势

描述性统计的集中趋势指标主要包括:众数、中位数、平均数和分位数。

1. 众数

使用场景:数据量大,识别最常见的类别。

常用数据类型:分类数据

import numpy as np
from scipy import statsdata = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5]
mode = stats.mode(data)
print(f"众数: {mode.mode[0]}, 频数: {mode.count[0]}")

优点:简单直观,易于理解。缺点:在多众数情况下可能不适用。

2. 中位数

使用场景:集中趋势分析

常用数据类型:顺序数据、数值数据

median = np.median(data)
print(f"中位数: {median}")

优点:不受极端值影响。缺点:不能利用所有数据。

3. 平均数

分类:简单平均数、加权平均数

使用场景:数据的均衡点

常用数据类型:数值数据

mean = np.mean(data)
print(f"平均数: {mean}")

优点:利用所有数据,计算简单。缺点:受极端值影响大。

4. 分位数

使用场景:反映数据的集中趋势

常用数据类型:数值数据

q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)
print(f"第一四分位数: {q1}, 第三四分位数: {q3}")

优点:提供数据分布信息。缺点:计算复杂。

三、描述性统计 - 离散程度

描述性统计的离散程度指标主要包括:异众比率、四分位差、极差、标准差和变异系数。

1. 异众比率

使用场景:衡量众数代表性

常用数据类型:分类数据

def heterogeneity_ratio(data):mode_count = stats.mode(data).count[0]total_count = len(data)return 1 - (mode_count / total_count)hr = heterogeneity_ratio(data)
print(f"异众比率: {hr}")

优点:简单直观。缺点:仅适用于分类数据。

2. 四分位差

使用场景:反映中间50%的数据离散程度

常用数据类型:数值数据

iqr = q3 - q1
print(f"四分位差: {iqr}")

优点:不受极端值影响。缺点:只考虑中间部分数据。

3. 极差

使用场景:反映数据范围

常用数据类型:数值数据

range_ = np.ptp(data)
print(f"极差: {range_}")

优点:计算简单。缺点:受极端值影响大。

4. 标准差

使用场景:数据离散程度

常用数据类型:数值数据

std_dev = np.std(data)
print(f"标准差: {std_dev}")

优点:利用所有数据。缺点:受极端值影响。

5. 变异系数

使用场景:数据变异程度

常用数据类型:数值数据

cv = std_dev / mean
print(f"变异系数: {cv}")

优点:标准化的离散程度指标。缺点:对于均值接近于零的数据不适用。

四、描述性统计 - 偏差程度

1. Z 分数

使用场景:统一量级,增加可比性

常用数据类型:数值数据

z_scores = stats.zscore(data)
print(f"z-scores: {z_scores}")

优点:标准化数据。缺点:需要计算均值和标准差。

2. 协方差和相关系数

使用场景:衡量两个变量的关系

常用数据类型:数值数据

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]# 协方差
covariance = np.cov(x, y)[0, 1]
print(f"协方差: {covariance}")# 相关系数
correlation = np.corrcoef(x, y)[0, 1]
print(f"相关系数: {correlation}")

优点:揭示变量间关系。缺点:仅适用于线性关系。

总结:通过理解和应用上述统计学基础知识,可以帮助我们更好地分析和解释数据,提高数据分析的准确性和科学性。希望本篇博客对你有所帮助!

(交个朋友/找资源/ai办公/技术接单,注明来意)

61353774f66242828147d0210ee69159.jpg

 

 

http://www.yayakq.cn/news/436465/

相关文章:

  • 境外社交网站上做推广360营销
  • 建设网站 怀疑对方传销 网站制作 缓刑网页设计教程自学网
  • 承德在线招聘外贸网站建设及优化ppt
  • php 商务网站开发实战wordpress好用的文件管理
  • 青岛网站备案什么是品牌网站建设
  • 电子商务网站建设规划书实例百度网页大全
  • 做网站ps分辨率给多少福鼎网站开发
  • 做网站实现图片自动压缩大良网站设计
  • 如何设置网站服务器访问权限世界上第二大互联网公司是
  • 兰州网站开发企业网络建设推广推荐
  • 宜春网站设计公司青岛网站seo收费
  • 中国建设造价信息网站广州地铁运营时间
  • 北京市建设官方网站网站建设中 优秀账户的标准
  • 营销型网站建设要点网站精美排版代码
  • 做淘宝客没网站怎么做抖音代运营合同范标准版
  • 大家都在哪些网站上做医药招商自个做网站教程
  • 商业网站图片全球首个完全响应式网站自助建设平台在中国诞生
  • 做网站用最新软件php 网站调试
  • 网站建设及推广好学习吗wordpress写书typecho主题
  • 网站开发遵循的原则网络营销方式方法
  • 吉林网站模板搞一个公司网站得多少钱
  • 人才网站怎么做京东商城平台商户
  • 百度网站推广价格邢台网站建设公司哪家好一点
  • 坑人的网站链接怎么做临淄找工作信息网
  • 怎么用表格做网站网站空间价格怎么算
  • 大名企业做网站推广html全屏网站
  • 网站开发 专有名词商城网站架构
  • 部门网站建设目的软件制作下载
  • 宝安高端网站建设公司企业网站 设计需求
  • 泉州找工作哪个网站好怎么做进入网站js特效