当前位置: 首页 > news >正文

万维网网站备案流程做网站 图片显示不出来

万维网网站备案流程,做网站 图片显示不出来,深圳网站建设推荐q479185700顶上,qq空间的网站系列文章目录 spark第一章:环境安装 spark第二章:sparkcore实例 spark第三章:工程化代码 文章目录系列文章目录前言一、三层架构二、拆分WordCount1.三层拆分2.代码抽取总结前言 我们上一次博客,完成了一些案例的练习&#xff0…

系列文章目录

spark第一章:环境安装
spark第二章:sparkcore实例
spark第三章:工程化代码


文章目录

  • 系列文章目录
  • 前言
  • 一、三层架构
  • 二、拆分WordCount
    • 1.三层拆分
    • 2.代码抽取
  • 总结


前言

我们上一次博客,完成了一些案例的练习,现在我要要进行一些结构上的完善,上一次的案例中,代码的耦合性非常高,想要修改就十分复杂,而且有很多代码都在重复使用,我们想要把一些重复的代码抽取出来,进而完成解耦合的操作,提高代码的复用。


一、三层架构

大数据的三层架构其中包括
controller(控制层):负责调度各模块
service(服务层):存放逻辑代码
dao(持久层):进行文件交互
现在我们分别给各层创建一个包
在这里插入图片描述
解释一下其中几个
application:项目的启动文件
bean:存放实体类
common:存放这个项目的通用代码
util:存放通用代码(所有项目均可)

二、拆分WordCount

万物皆可WordCount我们就以上次的WordCount为例操作。放一下源代码

object WordCount {def main(args: Array[String]): Unit = {//  创建 Spark 运行配置对象val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")// 创建 Spark 上下文环境对象(连接对象)val sc : SparkContext = new SparkContext(sparkConf)// 读取文件 获取一行一行的数据val lines: RDD[String] = sc.textFile("datas/word.txt")// 将一行数据进行拆分val words: RDD[String] = lines.flatMap(_.split(" "))// 将数据根据单次进行分组,便于统计val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))// 对分组后的数据进行转换val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)// 打印输出val array: Array[(String, Int)] = wordToSum.collect()array.foreach(println)sc.stop()}}

1.三层拆分

在进行数据抽取之前,我们先进行简单的三层架构拆分
记得把包名路径换成自己的
在这里插入图片描述
WordCountDao.scala
负责文件交互,也就是第一步的读取文件

package com.atguigu.bigdata.spark.core.rdd.framework1.daoimport com.atguigu.bigdata.spark.core.rdd.framework1.application.WordCountApplication.scclass WordCountDao {def readFile(path:String) ={sc.textFile(path)}
}

WordCountService.scala
负责逻辑运算

package com.atguigu.bigdata.spark.core.rdd.framework1.serviceimport com.atguigu.bigdata.spark.core.rdd.framework1.dao.WordCountDaoimport org.apache.spark.rdd.RDDclass WordCountService {private val wordCountDao =new WordCountDao()def dataAnalysis(): Array[(String, Int)] ={val lines: RDD[String] =wordCountDao.readFile("datas/word.txt")val words: RDD[String] = lines.flatMap(_.split(" "))val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)val array: Array[(String, Int)] = wordToSum.collect()array}
}

WordCountController.scala
负责调度项目

package com.atguigu.bigdata.spark.core.rdd.framework1.controllerimport com.atguigu.bigdata.spark.core.rdd.framework1.service.WordCountServiceclass WordCountController {private val wordCountService =new WordCountService()def dispath(): Unit ={val array=wordCountService.dataAnalysis()array.foreach(println)}
}

WordCountApplication.scala
main方法启动项目

package com.atguigu.bigdata.spark.core.rdd.framework1.applicationimport com.atguigu.bigdata.spark.core.rdd.framework1.controller.WordCountController
import org.apache.spark.{SparkConf, SparkContext}object WordCountApplication extends App {val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")val sc : SparkContext = new SparkContext(sparkConf)val controller = new WordCountController()controller.dispath()sc.stop()
}

在这里插入图片描述

2.代码抽取

接下来我们把一些常用或者会重复实用的代码抽取出来。
创建四个Train,用来抽取四个文件
在这里插入图片描述
TApplication.scala
其中通用代码为环境创建

package com.atguigu.bigdata.spark.core.rdd.framework.commonimport com.atguigu.bigdata.spark.core.rdd.framework.util.EnvUtil
import org.apache.spark.{SparkConf, SparkContext}trait TApplication {def start(master: String="local[*]", app: String="Application")(op: =>Unit): Unit ={val sparkConf: SparkConf = new SparkConf().setMaster(master).setAppName(app)val sc : SparkContext = new SparkContext(sparkConf)EnvUtil.put(sc)try {op}catch {case ex=>println(ex.getMessage)}sc.stop()EnvUtil.clear()}
}

TController.scala
定义调度Train之后由Controller进行重写

package com.atguigu.bigdata.spark.core.rdd.framework.commontrait TController {def dispatch():Unit
}

TDao.scala
WordCount通用读取,路径为参数

package com.atguigu.bigdata.spark.core.rdd.framework.commonimport com.atguigu.bigdata.spark.core.rdd.framework.util.EnvUtil
import org.apache.spark.rdd.RDDtrait TDao {def readFile(path:String): RDD[String] ={EnvUtil.take().textFile(path)}
}

TService.scala
和Controller类似,由Service重写

package com.atguigu.bigdata.spark.core.rdd.framework.commontrait TService {def dataAnalysis():Any
}

在这里插入图片描述
定义环境,确保所有类都能访问sc线程
EnvUtil.scala

package com.atguigu.bigdata.spark.core.rdd.framework.utilimport org.apache.spark.SparkContextobject EnvUtil {private val scLocal =new ThreadLocal[SparkContext]()def put(sc:SparkContext): Unit ={scLocal.set(sc)}def take(): SparkContext = {scLocal.get()}def clear(): Unit ={scLocal.remove()}
}

修改三层架构
WordCountApplication.scala

package com.atguigu.bigdata.spark.core.rdd.framework.applicationimport com.atguigu.bigdata.spark.core.rdd.framework.common.TApplication
import com.atguigu.bigdata.spark.core.rdd.framework.controller.WordCountControllerobject WordCountApplication extends App with TApplication{start(){val controller = new WordCountController()controller.dispatch()}}

WordCountController.scala

package com.atguigu.bigdata.spark.core.rdd.framework.controllerimport com.atguigu.bigdata.spark.core.rdd.framework.common.TController
import com.atguigu.bigdata.spark.core.rdd.framework.service.WordCountServiceclass WordCountController extends TController{private val WordCountService = new WordCountService()def dispatch(): Unit ={val array: Array[(String, Int)] = WordCountService.dataAnalysis()array.foreach(println)}
}

WordCountDao.scala

package com.atguigu.bigdata.spark.core.rdd.framework.daoimport com.atguigu.bigdata.spark.core.rdd.framework.common.TDaoclass WordCountDao extends TDao{}

WordCountService.scala

package com.atguigu.bigdata.spark.core.rdd.framework.serviceimport com.atguigu.bigdata.spark.core.rdd.framework.common.TService
import com.atguigu.bigdata.spark.core.rdd.framework.dao.WordCountDao
import org.apache.spark.rdd.RDDclass WordCountService extends TService{private val wordCountDao=new WordCountDao()def dataAnalysis(): Array[(String, Int)] = {val lines: RDD[String] = wordCountDao.readFile("datas/word.txt")val words: RDD[String] = lines.flatMap(_.split(" "))val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)val array: Array[(String, Int)] = wordToSum.collect()array}}

再次运行
在这里插入图片描述


总结

对spark项目代码的规范就到这里,确实有点复杂,我也不知道说清楚没有。

http://www.yayakq.cn/news/277380/

相关文章:

  • 个人网站如何做淘宝客荣成市有做网站的吗
  • 创建销售网站多少钱大连项目备案网站
  • 有哪些专门做减肥内容的网站永久免费微信小程序商城
  • 实战网站开发安卓应用市场app下载安装
  • 2008 iis 添加 网站 权限设置权限财经新闻最新消息
  • 临沂建设规划局网站网站制作哪家做的好
  • 内蒙能源建设集团网站网站跟网页的区别是什么
  • 重庆网站推广公司织梦好还是wordpress
  • 九江开发区建设环保局网站建筑模板一般多少钱一块
  • 杭州网站建设排名受欢迎的网站建设案例
  • app在线生成平台 免费沧州网站改版优化
  • 龙岩市城乡规划建设局网站镇江市官网
  • 企业网站的新闻资讯版块有哪些小白node怎么做网站
  • asp.net 做网站好吗wordpress文章网格
  • 中山学校的网站建设wordpress主页面编辑器
  • 上海华东建设发展设计有限公司网站一套网站开发需要多少钱
  • 重庆网站设计制作价格网站平台策划方案
  • 济南营销型网站建设团队马克斯网站建设
  • 个人网站建设的收获合同解除协议
  • 建设管理网站首页网站开发所需要的技术
  • 新乡网站建设制作张槎网站开发
  • 做网站需要学什么语言金蝶二次开发
  • 宁波网站制作流程wordpress怎样修改字体
  • 做网站 橙色怎么搭配做编程的 网站有哪些方面
  • wap网站开发协议公司的网站设计方案
  • 1t网站空间主机多少钱wordpress 局域网
  • 外网代理服务器网站凡科网小程序制作教程
  • 中国建设银行网上银行官方网站安徽建设工程信息网文件
  • 鹤壁做网站公司电话网站推广seo代理
  • wordpress 下载站模板简洁自适应wordpress主题