当前位置: 首页 > news >正文

网站怎么做分类聚合网站建设和网站优化哪个更重要

网站怎么做分类聚合,网站建设和网站优化哪个更重要,中国企业排行榜,docker wordpress多个在前文的项目开发实践中,我们已经以钢铁产业产品缺陷检测数据场景为基准,陆续开发构建了多款目标检测模型,感兴趣的话可以自行阅读即可。 《YOLOv3老矣尚能战否?基于YOLOv3开发构建建钢铁产业产品智能自动化检测识别系统&#xf…

在前文的项目开发实践中,我们已经以钢铁产业产品缺陷检测数据场景为基准,陆续开发构建了多款目标检测模型,感兴趣的话可以自行阅读即可。

《YOLOv3老矣尚能战否?基于YOLOv3开发构建建钢铁产业产品智能自动化检测识别系统,我们来与YOLOv5进行全方位对比评测》

《基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》 

《AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统》

《python基于YOLOv6最新0.4.1分支开发构建钢铁产业产品智能自动化检测识别系统》

《python基于DETR(DEtection TRansformer)开发构建钢铁产业产品智能自动化检测识别系统》 

《python基于YOLOv7系列模型【yolov7-tiny/yolov7/yolov7x】开发构建钢铁产业产品智能自动化检测识别系统》

本文的主要目的就是延续这一业务场景的模型开发,基于yolov8来开发构建不同参数量级的钢铁产品智能化质检系统,本文也是这一业务场景的最终章,首先来看实例效果:

接下来看下数据集情况:

共包含10种不同类型的产品缺陷,如下所示:

['chongkong', 'hanfeng', 'yueyawan', 'shuiban', 'youban', 'siban', 'yiwu', 'yahen', 'zhehen', 'yaozhe']

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

预训练模型可以到官方项目中自行下载即可。

五款不同参数量级的模型保持完全相同的训练参数配置,等待训练完成后,我们对其训练过程进行对比可视化,如下所示:

【mAP0.5】

mAP0.5(mean Average Precision at 0.5 intersection over union)是一种用于评估目标检测算法性能的指标。在目标检测任务中,mAP0.5衡量了检测算法在不同类别目标上的平均精度。

mAP0.5的计算过程包括以下几个步骤:

  1. 对于每个类别的目标,首先计算出每个检测结果的置信度(confidence)和相应的预测框的准确度(accuracy)。
  2. 根据置信度对检测结果进行排序,通常是按照置信度从高到低进行排序。
  3. 采用不同阈值(通常为0.5)作为IOU(Intersection over Union)的阈值,计算每个类别下的Precision-Recall曲线。
  4. 在Precision-Recall曲线上,计算出在不同召回率(Recall)下的平均精度(Average Precision)。
  5. 对所有类别的平均精度进行求平均,即得到mAP0.5指标。

mAP0.5的取值范围是0到1,数值越高表示检测算法在目标检测任务上的性能越好。它综合考虑了不同类别目标的精度和召回率,并对检测结果进行了排序和评估。

需要注意的是,mAP0.5只是mAP的一种变体,其中IOU阈值固定为0.5。在一些特定的目标检测任务中,可能会使用其他IOU阈值来计算mAP,例如mAP0.5:0.95表示使用IOU阈值从0.5到0.95的范围来计算平均精度。

整体对比来看,n系列模型的精度最低,s次之,m、l以及x系列的模型并没有非常明显的差距,从推理速度上来讲m系列的模型有着自身天然的优势。

接下来来看loss走势:

不同模型的差异不大,相对都是比较稳定的。

感兴趣的话也都可以自行尝试下!

 

http://www.yayakq.cn/news/131750/

相关文章:

  • 北京西站地址亚马逊购物网站
  • 无锡高端网站设计开发外贸网站和普通网站
  • 网站设计的工作内容制作注册会员的网站
  • 公司网站建设的目的和意义百度指数查询平台
  • 信用徐州网站建设情况云南网站建设找天软
  • 怎么开发个人网站租用海外服务器的网站有域名吗
  • 哪个网站可以做体育主播个人演讲比赛ppt模板
  • 长春手机模板建站网页浏览器缩略词
  • 网站建设高职考题目公司注册网上查询
  • 工 投标做哪个网站好科技企业网站制作
  • 电子商务网站开发参考文献大城县建设局网站
  • 天水企业网站建设淘宝运营培训视频
  • 手机怎么建网站链接网站灰色 代码
  • 做网站驻马店响应式网站案例源码
  • 阿帕奇建设网站博客重庆网站建设的公司哪家好
  • 影视制作南昌seo
  • 做外卖的网站上海网站建设设计公司排名
  • 怎样增加网站流量物流网络名词解释
  • 建设美食网站如何注册域名及网站
  • 百度网盘做存储网站企业方案
  • 香橼做空机构网站网络营销的工作岗位有哪些
  • 天津专门做网站电子商城网站开发要多少钱
  • 网站开发服务费记账觅知网是免费的吗
  • 哪些行业需要网站有哪些内容网站备案许可证
  • 商水县住房城乡建设网站服装设计效果图
  • 哪个网站能帮助做路书做网站怎么导入地图
  • 有做软件的网站有哪些宿迁房产网信息网
  • 学校网站的目的企业网站的推广方式和手段有哪些
  • 小程序网站开发怎么样百度商家
  • 湖北省住房部城乡建设厅网站呼和浩特市网站建设