当前位置: 首页 > news >正文

学做ps的软件的网站郑州便宜网站建设报价

学做ps的软件的网站,郑州便宜网站建设报价,怎么做王者荣耀网站,网站跳转至手机端如何做目录 1.二叉树的顺序结构 2.堆的概念及结构 3.堆的实现 3.1 向上调整算法与向下调整算法 3.2 堆的创建 3.3 建堆的空间复杂度 3.4 堆的插入 3.5 堆的删除 3.6 堆的代码的实现 4.堆的应用 4.1 堆排序 4.2 TOP-K问题 首先,堆是一种数据结构,一种特…

目录

1.二叉树的顺序结构

2.堆的概念及结构

3.堆的实现

3.1 向上调整算法与向下调整算法

3.2 堆的创建

 3.3 建堆的空间复杂度

3.4 堆的插入

 3.5 堆的删除

 3.6 堆的代码的实现

4.堆的应用

4.1 堆排序

4.2 TOP-K问题


首先,堆是一种数据结构,一种特殊的完全二叉树,采用顺序结构存储,在学习堆之前,我们先学习一下二叉树的顺序结构,再开始学习本篇文章的重点 ---

1.二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把(一种二叉树)使用顺序结构的数组来存储需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段

完全二叉树的顺序存储:

非完全二叉树的顺序存储:

 可以发现非完全二叉树可能会存在大量的空间浪费。

2.堆的概念及结构

如果有一个关键码的集合K= { k0,k1, k2,...,k(n-1) },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: Ki <= K(2i+1) 且 Ki <=  K(2i+2) (Ki >= K(2i+1) 且 K>= K(2i+2) ) i =0,1,2...,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

概括来说:

堆有大根堆小根堆之分,简称大堆小堆:

大堆:堆内所有父节点都大于子节点。根节点最大。

小堆:堆内所有父节点都小于子节点。根节点最小。

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

示例:

例题:

1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100

C 65,100,70,32,50,60

D 70,65,100,32,50,60

E 32,50,100,70,65,60

F 50,100,70,65,60,32

答案A

3.堆的实现

3.1 向上调整算法与向下调整算法

建堆有两种算法,一种是向上调整算法,一种是向下调整算法。现在我们给出一个数组,逻辑上看做一颗完全二叉树。

向上调整算法:

前提:前面元素已经构成堆,才能调整

比如在下面小堆后面插入5

 会将插入的数据向上调整到合适的位置

代码实现:

//交换
void Swap(HeapDataType* p1, HeapDataType* p2)
{HeapDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//小堆
void AdjustUp(HeapDataType* arr, int child)
{int parent = (child - 1) / 2;while (child > 0){if (arr[child] < arr[parent]){//交换Swap(&arr[child],&arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

 建立大堆和小堆的向上调整算法判断条件不同,略有差异。

向下调整算法:

我们通过从根节点开始的向下调整算法,可以把它调整成一个小堆。

向下调整算法有一个前提:左右子树必须是一个堆,才能调整

int array[] = {27,15,19,18,28,34,65,49,25,37};

以27为根的左右子树,都满足小堆的性质,只有根节点不满足,因此只需将根节点往下调整到合适的位置即可形成堆

代码实现

//向下调整
//完全二叉树没有左孩子,肯定没有右孩子   n是数组元素个数
void AdjustDown(HeapDataType* arr, int n, int parent)
{int child = parent * 2 + 1;while (child < n){//找出左右孩子中最小的if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[child] < arr[parent]){//交换Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

3.2 堆的创建

这里用向下调整算法创建,因为向上调整法时间复杂度较大,后面会讲

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆

int a[] = {1,5,3,8,7,6};

步骤如下: 

 3.3 建堆的空间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

向下调整算法建堆:

 所以向下调整算法建堆的时间复杂度为O(N)。

向上调整算法建堆:

向上调整算法需要从第2个节点开始向上调整,调整好之后,第3个节点向上调整,依次向后,直到调完。

 所以向上调整算法建堆的时间复杂度为O(N*(logN))。

所以这里推荐使用向下调整算法。

3.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

 3.5 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法

 3.6 堆的代码的实现

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}Heap;// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

具体实现:

//交换元素
void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType t = *p1;*p1 = *p2;*p2 = t;
}
//向下调整 小堆
void AdjustDown(HPDataType* arr, int n, int parent)
{int child = parent * 2 + 1;while (child < n){//找最小子树if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{return;}}
}
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n)
{assert(hp);hp->a = (HPDataType*)malloc(sizeof(HPDataType) * n);if (hp->a == NULL){return;}hp->capacity = n;hp->size = n;for (int i = 0; i < n; i++){hp->a[i] = a[i];}for (int i = (n-1-1)/2; i >= 0; i--){AdjustDown(hp->a, n, i);}}
// 堆的销毁
void HeapDestory(Heap* hp)
{assert(hp);free(hp->a);hp->a = NULL;hp->size = hp->capacity = 0;
}//向上调整  小堆
void AdjustUp(HPDataType* arr, int child)
{int parent = (child - 1) / 2;while (child > 0){if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{return;}}
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{assert(hp);if (hp->size == hp->capacity){int newcapacity = hp->a == NULL ? 4 : hp->capacity * 2;HPDataType* ptr = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);if (ptr == NULL){perror("realloc fail");return;}hp->a = ptr;hp->capacity = newcapacity;}hp->a[hp->size] = x;hp->size++;//向上调整AdjustUp(hp->a, hp->size - 1);
}// 堆的删除
void HeapPop(Heap* hp)
{assert(hp);assert(!HeapEmpty(hp));Swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;//向下调整AdjustDown(hp->a, hp->size, 0);}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{assert(hp);assert(!HeapEmpty(hp));return hp->a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{assert(hp);return hp->size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{assert(hp);return hp->size == 0;
}

4.堆的应用

4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1.建堆

  • 升序:建大堆
  • 降序:建小堆

2.利用堆删除思想来进行排序。

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序

示例:升序:

#include<stdio.h>
//交换
void swap(int* p1, int* p2)
{int t = *p1;*p1 = *p2;*p2 = t;
}//向下调整 大堆
void Adjustdown(int* arr, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && arr[child] < arr[child + 1]){child++;}if (arr[child] > arr[parent]){swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapSort(int* a, int n)
{//建堆  升序建大堆//向下调整for (int i = (n - 1 - 1) / 2; i >= 0; i--){Adjustdown(a, n, i);}//排序 int end = n - 1;while (end){swap(&a[end], &a[0]);Adjustdown(a, end, 0);end--;}
}int main()
{int arr[] = { 10,50,40,20,30,60,70 };int sz = sizeof(arr) / sizeof(int);HeapSort(arr, sz);for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1.用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆

2.用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素,再向下调整。

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

示例代码:这里需要生成文件后打开文件把几个数改成较大的值,模拟数据中的最大值,再注释掉CreateNDate()函数,模拟TOP-K问题,因为再写文件会把原来的数据覆盖掉。

#include<stdio.h>
#include<time.h>
void swap(int* p1, int* p2)
{int t = *p1;*p1 = *p2;*p2 = t;
}//小堆
void Adjustdown(int* arr, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[child] < arr[parent]){swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void CreateNDate()
{// 造数据int n = 10000;srand((unsigned int)time(NULL));FILE* file = fopen("data.txt", "w");for (int i = 0; i < n; i++){fprintf(file,"%d\n", rand() % 10000);//生成10000以内的随机数}fclose(file);
}void PrintTopK(int k)//最大的k个数
{CreateNDate();//造数据,选这些数据中的最大值FILE* file = fopen("data.txt", "r");//建立小堆int* arr = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++){fscanf(file, "%d", &arr[i]);}for (int i = (k-1-1)/2; i >=0 ; i--){Adjustdown(arr, k, i);}int a = 0;while (fscanf(file, "%d", &a)!=EOF){if (arr[0] < a){swap(&arr[0], &a);}Adjustdown(arr, k, 0);}for (int i = 0; i < k; i++){printf("%d ", arr[i]);}fclose(file);free(arr);
}int main()
{PrintTopK(5);return 0;
}

本篇结束
 

http://www.yayakq.cn/news/615426/

相关文章:

  • 中文网站 可以做谷歌推广吗自己搭建网站要钱吗
  • 做百度推广网站被攻击唐山网站建设七彩科技
  • 合肥网站建设步骤制作商城网站
  • 网站后台树形菜单样式自由空间网站建设
  • 那个视频网站可以做gif成都网站建设备案
  • 个人备案的域名拿来做经营网站wordpress仿亿欧网
  • 专注七星彩网站开发出租wordpress安装在哪
  • 优秀设计网站视频网站开发流程
  • 如何提交网站连接到百度北京网页制作教程
  • 广东网站建设怎么收费上海外贸建站推广公司
  • 机械网站建设比较好的江门seo网站
  • .net 网站开发微信公众号怎么做文章编辑
  • app跟网站的区别上海娱乐场所关闭
  • 为什么两学一做进不去网站百度在线识图查图片
  • 公共空间设计网站开发一个资金盘app多少钱
  • 做外贸网站服务张家港做网站排名
  • 做电影网站用什么服务器比较好顺德微网站建设
  • 周村有做网站广告的吗网站建设漠环熊掌号
  • 如何自己开发一个网站济南软件公司排名
  • 网站建设 广州网站建设专业公司给公司建网站需要多少钱
  • 西宁公司网站设计广州h5网站制作公司
  • ie的常用网站成功的营销网站
  • 电子商务网站建设的体会网站备案简介怎么写
  • 张槎手机网站建设可以做h5的网站
  • 个人网站建设的计划书百度网站如何做运营
  • 如何制作网站和网页阿里云小程序开发
  • 陕西建设厅网站首页接广告的平台
  • 郑州网站seo优免费咨询怀孕医生
  • 怎么完整下载网站模板餐饮类网站设计
  • 网站建设开发网站案例项目费用ui设计教学