当前位置: 首页 > news >正文

如何用模板做网站视频淮南网络推广公司

如何用模板做网站视频,淮南网络推广公司,聊城市住房和城乡建设局网站,网站推广分销系统通用的数据科学库,即那些可能被数据科学领域的从业人员用于广义的,非神经网络的,非研究性工作的库: 数据-用于数据管理,处理和其他处理的库 数学-虽然许多库都执行数学任务,但这个小型库却专门这样做 机…

通用的数据科学库,即那些可能被数据科学领域的从业人员用于广义的,非神经网络的,非研究性工作的库:

数据-用于数据管理,处理和其他处理的库

数学-虽然许多库都执行数学任务,但这个小型库却专门这样做

机器学习-自我解释;不包括主要用于构建神经网络或用于自动化机器学习过程的库

自动化机器学习-主要用于自动执行与机器学习相关的过程的库

数据可视化-与建模,预处理等相反,主要提供与数据可视化相关的功能的库。

解释与探索-主要用于探索和解释模型或数据的库

数据

1. Apache Spark

https://github.com/apache/spark

star:27600,贡献:28197,贡献者:1638

Apache Spark-用于大规模数据处理的统一分析引擎

2.Pandas

https://github.com/pandas-dev/pandas

star:26800,贡献:24300,贡献者:2126

Pandas是一个Python软件包,提供了快速,灵活和可表达的数据结构,旨在使使用“关系”或“标记”数据既简单又直观。它旨在成为在Python中进行实用,真实世界数据分析的基本高级构建块。

3.Dask

https://github.com/dask/dask

star:7300,贡献:6149,贡献者:393

任务调度的并行计算

数学

4. Scipy

https://github.com/scipy/scipy

star:7500,贡献:24247,贡献者:914

SciPy发音为“ Sigh Pie”是用于数学,科学和工程的开源软件。它包括用于统计,优化,积分,线性代数,傅立叶变换,信号和图像处理,ODE求解器等的模块。

5. Numpy

GitHub - numpy/numpy: The fundamental package for scientific computing with Python.

star:1500,贡献:24266,提供者:1010

使用Python进行科学计算的基本软件包。

机器学习

6. Scikit-Learn

https://github.com/scikit-learn/scikit-learn

star:42500,贡献:26162,贡献者:1881

Scikit-learn是一个基于SciPy的Python机器学习模块,并以3条款BSD许可分发。

7. XGBoost

GitHub - dmlc/xgboost: Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

star:19900,贡献:5015,贡献者:461

适用于Python,R,Java,Scala,C ++等的可扩展,便携式和分布式梯度增强GBDT,GBRT或GBM库。在单机,Hadoop,Spark,Flink和DataFlow上运行

8. LightGBM

https://github.com/microsoft/LightGBM

star:11600,贡献:2066,贡献者:172

基于决策树算法的快速,分布式,高性能梯度提升GBT,GBDT,GBRT,GBM或MART框架,用于排名,分类和许多其他机器学习任务。

9.Catboost

https://github.com/catboost/catboost

star:5400,贡献:12936,贡献者:188

快速,可扩展,高性能的“决策树上的梯度提升”库,用于对Python,R,Java,C ++进行排名,分类,回归和其他机器学习任务。支持在CPU和GPU上进行计算。

10. Dlib

https://github.com/davisking/dlib

star:9500,贡献:7868,贡献者:146

Dlib是一个现代的C ++工具箱,其中包含机器学习算法和工具,这些工具和工具可以用C ++创建复杂的软件来解决实际问题。可以通过dlib API与Python一起使用

11.Annoy

https://github.com/spotify/annoy

star:7700,贡献:778,贡献者:53

C ++ / Python中的近似最近邻居已针对内存使用情况以及加载/保存到磁盘进行了优化

12.H20ai

https://github.com/h2oai/h2o-3

star:500,贡献贡献:27894,贡献者:137

适用于更智能应用的开源快速可扩展机器学习平台:深度学习,梯度提升和XGBoost,随机森林,广义线性建模逻辑回归,弹性网,K均值,PCA,堆叠集成,自动机器学习AutoML等。

13. StatsModels

https://github.com/statsmodels/statsmodels star:5600,承诺:13446,贡献者:247

Statsmodels:Python中的统计建模和计量经济学

14. mlpack

https://github.com/mlpack/mlpack

star:3400,贡献:24575,贡献者:190

mlpack是一个直观,快速且灵活的C ++机器学习库,具有与其他语言的绑定

15.Pattern

https://github.com/clips/pattern

star:7600,贡献:1434,贡献者:20

用于Python的Web挖掘模块,具有用于抓取,自然语言处理,机器学习,网络分析和可视化的工具。

16.Prophet

https://github.com/facebook/prophet

star:11500,贡献:595,贡献者:106

用于为具有多个季节性且线性或非线性增长的时间序列数据生成高质量预测的工具。

自动化机器学习

17. TPOT

https://github.com/EpistasisLab/tpot

star:7500,贡献:2282,贡献者:66

一个Python自动化机器学习工具,可使用遗传编程来优化机器学习pipeline。

18. auto-sklearnhttps://github.com/automl/auto-sklearn

star:4100,贡献:2343,贡献者:52

auto-sklearn是一种自动化的机器学习工具包,是scikit-learn估计器的直接替代品。

19. Hyperopt-sklearn

https://github.com/hyperopt/hyperopt-sklearn

star:1100,贡献:188,贡献者:18

Hyperopt-sklearn是scikit-learn中机器学习算法中基于Hyperopt的模型选择。

20. SMAC-3

https://github.com/automl/SMAC3

star:529,贡献:1882,贡献者:29

基于顺序模型的算法配置

21. scikit-optimizehttps://github.com/scikit-optimize/scikit-optimize

star:1900,贡献:1540,贡献者:59

Scikit-Optimize或skopt是一个简单高效的库,可最大限度地减少非常昂贵且嘈杂的黑盒功能。它实现了几种基于顺序模型优化的方法。

22. Nevergrad

https://github.com/facebookresearch/nevergrad

star:2700,贡献:663,贡献者:38

用于执行无梯度优化的Python工具箱

23.Optuna

https://github.com/optuna/optuna

star:3500,贡献:7749,贡献者:97

Optuna是一个自动超参数优化软件框架,专门为机器学习而设计。

数据可视化

24. Apache Superset

https://github.com/apache/incubator-superset

star:30300,贡献:5833,贡献者:492

Apache Superset是一个数据可视化和数据探索平台

25. Matplotlib

https://github.com/matplotlib/matplotlib

star:12300,贡献:36716,贡献者:1002

Matplotlib是一个综合库,用于在Python中创建静态,动画和交互式可视化。

26.Plotly

https://github.com/plotly/plotly.py

star:7900,贡献:4604,贡献者:137

Plotly.py是适用于Python的交互式,基于开源和基于浏览器的图形库

27. Seaborn

https://github.com/mwaskom/seaborn

star:7700,贡献:2702,贡献者:126

Seaborn是基于matplotlib的Python可视化库。它提供了用于绘制吸引人的统计图形的高级界面。

28.folium

GitHub - python-visualization/folium: Python Data. Leaflet.js Maps.

star:4900,贡献:1443,贡献者:109

Folium建立在Python生态系统的数据处理能力和Leaflet.js库的映射能力之上。用Python处理数据,然后通过folium在可视化的Leaflet贴图中显示。

29. Bqplot

https://github.com/bqplot/bqplot

star:2900,贡献:3178,贡献者:45

Bqplot是Jupyter的二维可视化系统,基于图形语法的构造。

30. VisPy

https://github.com/vispy/vispy

star:2500,贡献:6352,贡献者:117

VisPy是一个高性能的交互式2D / 3D数据可视化库。VisPy通过OpenGL库利用现代图形处理单元GPU的计算能力来显示非常大的数据集。

31. PyQtgraph

https://github.com/pyqtgraph/pyqtgraph

star:2200,贡献:2200,贡献者:142

用于科学/工程应用的快速数据可视化和GUI工具

32.Bokeh

https://github.com/bokeh/bokeh

star:1400,贡献:18726,贡献者:467

Bokeh是用于现代Web浏览器的交互式可视化库。它提供通用图形的优雅,简洁的构造,并在大型或流数据集上提供高性能的交互性。

33.Altair

https://github.com/altair-viz/altair

star:600,贡献:3031,贡献者:106

Altair是用于Python的声明性统计可视化库。使用Altair,您可以花费更多时间来理解数据及其含义。

解释与探索

34. eli5https://github.com/TeamHG-Memex/eli5

star:2200,贡献贡献:1198,贡献者:15

一个用于调试/检查机器学习分类器并解释其预测的库

35. LIMEh

ttps://github.com/marcotcr/lime star:800,承诺:501,贡献者:41

Lime:解释任何机器学习分类器的预测

36. SHAP

https://github.com/slundberg/shap

star:10400,贡献:1376,贡献者:96

一种博弈论方法,用于解释任何机器学习模型的输出。

37. YellowBrick

https://github.com/DistrictDataLabs/yellowbrick

star:300,贡献:825,贡献者:92

可视化分析和诊断工具,有助于机器学习模型的选择。

38.pandas-profiling

https://github.com/pandas-profiling/pandas-profiling

star:6200名,贡献:704名,贡献者:47名

原文链接:

生态、遥感、水文水资源、大气科学多领域详细操作教程​

http://www.yayakq.cn/news/25507/

相关文章:

  • php网站模板下载网站建设需求单
  • 网站的网页设计毕业设计有前景的长沙企业网站建设
  • lamp环境做网站html5游戏
  • 网站前端模板下载平面设计网页设计师招聘
  • 怎么做网站推广线下城乡住房建设部网站造价师网
  • 网站图片移动怎么做泉州小程序开发科技公司
  • 建设工作室网站网站运营专员岗位职责
  • 网站开发招聘名称云南省建设厅网站发文
  • 杭州模板网站好网站策划书模板范文
  • 宁波制作网站哪个好网站开通宣传怎么写
  • 网站改版 大量旧页面网站备案要营业执照吗
  • 泊头网站制作国外教程 网站
  • 免费网站建设合同书.net网站开发代码
  • 网站建设与管理中专燕郊做网站的公司
  • 网站开发前段和后端泗洪网页定制
  • 网站建设的英文翻译在线制图生成器
  • 自助建站网站的宣传手册上海网站建设多少费用
  • 网站建设服务提供商网站建设公司源码 asp
  • 深圳有哪些网站是做餐饮沙龙的福田区网站建
  • 网站后台如何更改广州外贸营销型网站建设
  • 网站站点建设分为佛山企业网站排名
  • 网站开发公司经营范围服务器搭建网站环境
  • 购物网站建设收费邢台做网站的公司有那个
  • 两学一做网站飘窗企业网站建设参考文献
  • 沈阳网站制作定制策划捕鱼网站建设
  • 云南旅游网站开发公司产品推广活动方案
  • 《php与mysql网站开发全接触》光盘源码.rarwordpress如何开启cdn加速服务
  • 涉密项目单位网站建设流程网站建设验收书
  • 代做设计的网站小红书推广计划
  • 通辽市工程建设网站新专业建设的重点任务