当前位置: 首页 > news >正文

武威网站建设iis网站搭建

武威网站建设,iis网站搭建,广州企业网站seo,一个简单校园网的设计提示:努力生活,开心、快乐的一天 文章目录 583. 两个字符串的删除操作💡解题思路🤔遇到的问题💻代码实现🎯题目总结 72. 编辑距离💡解题思路🤔遇到的问题💻代码实现&…

提示:努力生活,开心、快乐的一天

文章目录

  • 583. 两个字符串的删除操作
    • 💡解题思路
    • 🤔遇到的问题
    • 💻代码实现
    • 🎯题目总结
  • 72. 编辑距离
    • 💡解题思路
    • 🤔遇到的问题
    • 💻代码实现
    • 🎯题目总结
  • 🎈今日心得


583. 两个字符串的删除操作

题目链接:583. 两个字符串的删除操作

💡解题思路

  1. 本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的
  2. 动规五部曲
  • 确定dp数组以及下标的含义:dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
  • 确定递推公式:主要就是两大情况: word1[i - 1] 与 word2[j - 1]相同,word1[i - 1] 与 word2[j - 1]不相同
    word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
    当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
    情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
    情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
    情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
    所以递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
    因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
    从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
  • dp数组如何初始化:dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
    同理dp[0][j] = j
  • 确定遍历顺序:从递推公式,可以看出,有三个方向可以推出dp[i][j]在这里插入图片描述
  • 举例推导dp数组:按照递推公式推导一下做推导,如果发现结果不对,就把dp数组打印出来在这里插入图片描述

🤔遇到的问题

  1. 注意初始化

💻代码实现

动态规划

var minDistance = function(word1, word2) {//dp[i][j],以i-1结尾的word1和以j-1结尾的word2,想要达到相等,所需要删除元素的最少次数。let w1 = word1.lengthlet w2 = word2.lengthlet dp = new Array(w1 + 1).fill(0).map(x => new Array(w2 + 1).fill(0))//初始化//word2为空字符串for (let i = 0; i <= w1; i++){dp[i][0] = i}//word1为空字符串for (let j = 0; j <= w2; j++){dp[0][j] = j}for (let i = 1; i <= w1; i++){for (let j = 1; j <= w2; j++){if (word1[i - 1] === word2[j - 1]) {dp[i][j] = dp[i-1][j-1]} else {dp[i][j] = Math.min(dp[i-1][j]+1,dp[i][j-1]+1)}}}console.log(dp)return dp[w1][w2]
};

🎯题目总结

特别注意的是:此题两个字符床都可以进行删除,所以在初始化和递推公式都会与之前有所不同,需要特别注意


72. 编辑距离

题目链接:72. 编辑距离

💡解题思路

  1. 动规五部曲
  • 确定dp数组以及下标的含义:dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]
  • 确定递推公式:要考虑清楚编辑的几种操作,4种情况
if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

情况1: if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];根据dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。
情况2:if (word1[i - 1] != word2[j - 1])时
1、操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i - 1][j] + 1;
2、操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i][j - 1] + 1;
注意:word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样!
3、操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

  • dp数组如何初始化:
    dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;同理dp[0][j] = j;
  • 确定遍历顺序:dp[i][j]是依赖左方,上方和左上方元素的在这里插入图片描述
  • 举例推导dp数组:按照递推公式推导一下做推导,如果发现结果不对,就把dp数组打印出来在这里插入图片描述

🤔遇到的问题

  1. word1[i - 1] != word2[j - 1时的三种情况的分析

💻代码实现

动态规划

var minDistance = function(word1, word2) {let w1 = word1.lengthlet w2 = word2.lengthlet dp = new Array(w1 + 1).fill(0).map(x => new Array(w2 + 1).fill(0))for (let i = 0; i <= w1; i++){dp[i][0] = i}for (let j = 0; j <= w2; j++){dp[0][j] = j}for (let i = 1; i <= w1; i++){for (let j = 1; j <= w2; j++){if (word1[i - 1] === word2[j - 1]) {dp[i][j] = dp[i-1][j-1]} else {dp[i][j] = Math.min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1}}}return dp[w1][w2]
};

🎯题目总结

if (word1[i - 1] != word2[j - 1])时
1、操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i - 1][j] + 1;
2、操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i][j - 1] + 1;
注意:word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样!
3、操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

🎈今日心得

编辑距离的题目终于达到了最难的一题,确实难

http://www.yayakq.cn/news/949320/

相关文章:

  • 成都公司建站模板东昌网站建设费用
  • 宁波江北区网站推广联系方式别人在百度冒用公司旗号做网站
  • 网站风格设计甘肃建设监理协会网站
  • 怎么做多个网站单点登录设计师网站1688
  • 徐州网站seo公司网络市场营销
  • 做淘宝主要看哪些网站有哪些内容wordpress仿站步骤
  • 科技类公司网站怎么设计网站维护广州建网站
  • 优化网站及商品排名怎么做江阴网站建设多少钱
  • 工具刷网站排刷排名软件江苏模板网站建设
  • 社交网站 备案外贸网站建设制作
  • 企业网站建设后期维护费用成都网站建设高端
  • 专注网站基础优化做网站的一般步骤
  • 在网上可以做宣传的有那些网站商标注册网查询
  • 大学作业旅游网站设计报告国外flash网站欣赏
  • 东莞浩智网站建设公司制作企业网站的
  • 学网站设计和平面设计深圳市手机网站建设报价
  • 凡科建站和wordpress住房建设厅的网站首页
  • 网站怎么伪静态网站网络营销服务的内容
  • 葫芦岛网站制作网站美工培训机构
  • 公司一个人做网站用手机什么软件做网站
  • 有哪些可以做1元夺宝的网站o2o商城网站制作
  • 在哪里可以做自己的网站建设部网站网上大厅
  • 做网站还需要兼容ie6吗wordpress add_theme_support
  • 搜索引擎是网站吗wordpress 伪静态 403
  • 虎林网站建设专门做库存处理的网站
  • 昆明网站建设搜q479185700营销型网站建设公司哪家好哪个好
  • 德国建设部网站微信做公司网站怎么做
  • 优化网站规模北京网站技术开发公司
  • 网站集群怎么做公司网站开发策划
  • 用mui做的网站wordpress评论密码保护