当前位置: 首页 > news >正文

做网站要素个人做金融网站能赚钱吗

做网站要素,个人做金融网站能赚钱吗,wordpress主题改中文,网站空间在哪申请「高等数学」雅可比矩阵和黑塞矩阵的异同 雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数( f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm)的一阶偏导数按行排列所得的矩阵。 黑塞矩阵,又叫海森矩…

「高等数学」雅可比矩阵和黑塞矩阵的异同

雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数 f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:RnRm)的一阶偏导数按行排列所得的矩阵。

黑塞矩阵,又叫海森矩阵,Hesse matrix,是多元函数 f : R n → R f:\mathbb{R}^n \to \mathbb{R} f:RnR)的二阶偏导数组成的方阵。

1、雅可比矩阵 J m × n J_{m\times n} Jm×n

雅可比矩阵通常是一个mxn的矩阵。

给出一个向量值函数: h ( x ) = ( h 1 ( x ) , h 2 ( x ) , ⋯ , h m ( x ) ) T h(\mathbf{x}) = (h_1(\mathbf{x}),h_2(\mathbf{x}),\cdots,h_m(\mathbf{x}))^T h(x)=(h1(x),h2(x),,hm(x))T

它的雅可比矩阵是:

J = [ ∂ h ∂ x 1 ⋯ ∂ h ∂ x n ] = [ ∂ h 1 ∂ x 1 ⋯ ∂ h 1 ∂ x n ⋮ ⋱ ⋮ ∂ h m ∂ x 1 ⋯ ∂ h m ∂ x n ] {\displaystyle \mathbf {J} ={\begin{bmatrix}{\dfrac {\partial \mathbf {h} }{\partial x_{1}}}&\cdots &{\dfrac {\partial \mathbf {h} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}{\dfrac {\partial h_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial h_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{m}}{\partial x_{n}}}\end{bmatrix}}} J=[x1hxnh]= x1h1x1hmxnh1xnhm

矩阵的每一行相当于每个向量值函数的分量的梯度的转置,或者叫一阶偏导数按行(row)排列。

一个n元实值函数的梯度的雅可比矩阵:
J = D [ ∇ f ( x ) ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ⋯ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {J} = D[\nabla f(\mathbf{x})] = {\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}\\ \\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}\\ \\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} J=D[f(x)]= x122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn22f

2、黑塞矩阵 H n × n H_{n\times n} Hn×n

黑塞矩阵一定是一个方阵。

二阶混合偏导数:
∂ 2 f ∂ y ∂ x = ∂ ∂ y ( ∂ f ∂ x ) = f x y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = f_{xy} yx2f=y(xf)=fxy
对于一个n元实值函数 f ( x ) f(\mathbf{x}) f(x),它的梯度为一个列向量: ∇ f ( x ) = ( f x 1 ( x ) , f x 2 ( x ) , ⋯ , f x n ( x ) ) T \nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}),f_{x_2}(\mathbf{x}),\cdots,f_{x_n}(\mathbf{x}))^T f(x)=(fx1(x),fx2(x),,fxn(x))T

对其求二阶偏导数,并将偏导数按列(col)排列。
H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {H} ={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}\\\\{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}\\\\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} H= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f


因此:

  1. 对于一个二阶可微的n元实值函数,它的黑塞矩阵的转置🟰它的梯度的雅可比矩阵。

  2. 对于一个二阶连续可微的n元实值函数,其二阶混合偏导数: ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} yx2f=xy2f。此时,其黑塞矩阵🟰它的梯度的雅可比矩阵。

  3. 在很多地方,遇到的都是二阶连续可微的情况,因此有些地方对雅可比矩阵和黑塞矩阵不加以区分。

http://www.yayakq.cn/news/768869/

相关文章:

  • 宁波网站推广找哪家寻找徐州网站开发
  • aws 建网站摩托车建设网站
  • 做网站得每年续费吗社区论坛网站建设
  • 做二手平台公益的网站英文模板网站
  • 无锡网站制作深圳网站建设网站推广的方法
  • 邯郸做移动网站价格京山网站开发
  • 网站建设书籍附光盘colorway wordpress
  • win10建设网站目录手机网站做指向
  • 网站模板做的比较好的wordpress 图片 压缩
  • 猎上网登陆官方网站客厅设计
  • 矢量插画的网站2021给个最新网站
  • 深圳网站建设 设计没有货源怎么开网店?
  • 网站建设步骤流程详细介绍网站加seo需要多少钱
  • 邢台集团网站建设费用新建wordpress模板
  • 网站倒计时怎么做网站风格配置怎么做
  • 电影网站怎么建设灰色网站设计
  • 外包公司做的网站怎么改密码学校网站开发图片素材
  • 做一小说网站要花多钱如何让网站快速收录你
  • 做影视网站赚钱吗网站seo优化服务
  • 做公司网站的价格邮件模板网站
  • 郑州做网站企业北京建筑人才招聘网
  • 郑州做网站那家做的好什么是网站开发公司电话
  • 深圳网站建设延安网站建设 東道网络
  • 杭州教育网站建设科普类网站怎么做
  • 厦门模板建站网站开发工程师培训
  • 好的网站制作wordpress网盘
  • 手机网站怎么开发安顺高端网站建设平台
  • 潍坊专业网站建设价格低秦皇岛海三建设集团
  • 建设银行网站用什么字体wordpress去除 版权信息
  • 上海一 网站建设公司网站建设相关工作