当前位置: 首页 > news >正文

做企业网站要不要我们自己提供网站相关的图片?网站开发与调试实验报告

做企业网站要不要我们自己提供网站相关的图片?,网站开发与调试实验报告,html5响应式模板,wordpress 自定义选项页面Commitment 概述 密码学承诺是一个涉及两方的二阶段交互协议,双方分别为承诺方和接收方。简述来说,它的功能涵盖不可更改性和确定性。 承诺方发送的消息密文,一旦发出就意味着不会再更改,而接收方收到这个消息可以进行验证结果。…

Commitment

概述

密码学承诺是一个涉及两方的二阶段交互协议,双方分别为承诺方和接收方。简述来说,它的功能涵盖不可更改性和确定性。
承诺方发送的消息密文,一旦发出就意味着不会再更改,而接收方收到这个消息可以进行验证结果。
特点就是无需第三方就可以进行验证。

举个例子:猜拳问题

假设有人在猜拳中老是不按时出拳,那么在看到对方的结果再出拳,显然是不公平的,在没有第三方的情况下,怎样保证无人作弊呢?那就是承诺。
这里使用一个哈希函数构造一个简单的承诺方案,双方选取一个足够安全的哈希函数H(x)H(x)H(x),将猜拳的三种出拳方法定为一组数字如x1,x2,x3x_1,x_2,x_3x1,x2,x3。那么方案如下,

  • 选手一选择一个出拳方法xix_ixi(如x1x_1x1),再选取一个随机数rir_iri如(r1r_1r1),计算承诺H(x1∣∣r1)H(x_1||r_1)H(x1∣∣r1),并把它发送给选手二。
  • 选手二也选择一个出拳方法(如x3x_3x3),同样也选择一个随机数r2r_2r2,计算承诺H(x2∣∣r2)H(x_2||r_2)H(x2∣∣r2),并把它发送给选手一。
  • 双方都收到承诺后,都公布自己的xix_ixirir_iri,然后进行验证即可

选择添加随机数的原因主要预防某一方直接算出三种出拳方式的哈希,然后接收到了另一方的哈希后,直接进行对比作弊。
可以看到承诺主要分为两个阶段

  1. Commit Phase:把暂时不想公开的消息(即前面的出拳方案)再加一个随机数,加密后(如前面的计算哈希)发送给对方;
  2. Reveal Phase:公开秘密和随机数。

性质

承诺具有两个基本性质:隐藏性(Hiding)绑定性(Binding),隐藏也就是承诺值是不会泄漏有关原消息的任何信息的,而绑定就是接收方可以确信收到的消息是该承诺对应的消息,不可能再找到一个不同的消息从而诞生同一个承诺。
而衡量性质强度一般有两个标准 PerfectlyComputationally,前者代表即便有无穷计算能力也不能破坏掉该性质,后者则是以目前的计算能力在可忍受的时间里是不能破坏该性质的。
但不存在Perfectly Hiding和Perfectly Binding,假设存在一个Perfectly Hiding,那么为了不泄露原消息,一定会有多个消息能计算出同一个承诺,这恰好违背了Binding的性质。

常用方案

主要是拥有Perfectly hiding and computationally binding的Pedersen Commitment 和 拥有Perfectly binding but computationally hiding的 ElGamal Commitment

Pedersen Commitment

DL(离散对数)

选择一个阶为qqq的乘法群GGG,再选择两个元素g,h∈Gqg,h \in G_qg,hGqxxx是消息,rrr是随机数

  • Commit Phase:Commit(x,r)=gxhrCommit(x,r)=g^xh^rCommit(x,r)=gxhr
  • Reveal Phase:公开x,rx,rx,r

加同态
Commit(x1,r1)×Commit(x2,r2)=gx1hr1×gx2hr2=gx1+x2hr1+r2=Commit(x1+x2,r1+r2)\begin{aligned} Commit(x_1,r_1) \times Commit(x_2,r_2) &= g^{x_1}h^{r_1} \times g^{x_2}h^{r_2}\\ &=g^{x_1+x_2}h^{r_1+r_2} \\ &=Commit(x_1+x_2,r_1+r_2) \end{aligned}Commit(x1,r1)×Commit(x2,r2)=gx1hr1×gx2hr2=gx1+x2hr1+r2=Commit(x1+x2,r1+r2)

ECC(椭圆曲线)

选择椭圆曲线上的一个基点GGG和随机一个点HHH

  • Commit Phase:Commit(x,r)=Gx+HrCommit(x,r)=Gx+HrCommit(x,r)=Gx+Hr
  • Reveal Phase:公开x,rx,rx,r

加同态
$\begin{aligned}

\end{aligned}$Commit(x1,r1)+Commit(x2,r2)=Gx1+Hr1+Gx2+Hr2=(x1+x2)G+(r1+r2)H=Commit(x1+x2,r1+r2)\begin{aligned} Commit(x_1,r_1) + Commit(x_2,r_2) &= Gx_1+Hr_1 + Gx_2+Hr_2 \\ &=(x_1+x_2)G+(r_1+r_2)H \\ &=Commit(x_1+x_2,r_1+r_2) \end{aligned}Commit(x1,r1)+Commit(x2,r2)=Gx1+Hr1+Gx2+Hr2=(x1+x2)G+(r1+r2)H=Commit(x1+x2,r1+r2)

ElGamal Commitment

假设GGG是阶为qqq的循环群,而g,hg,hg,hGGG的两个随机生成元。消息m∈Gm \in GmG,随机数r∈Zqr \in \mathbb{Z}_qrZq

  • Commit Phase:Commit=(gr,mhr)Commit=(g^r,mh^r)Commit=(gr,mhr)
  • Reveal Phase:公开(m,r)(m,r)(m,r)

参考

密码学承诺之Pedersen commitment原理及应用
Commitment Scheme
Pedersen, T. P. (1991). Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. Advances in Cryptology - CRYPTO '91, 129-140. doi: 10.1007/3-540-46766-1_9

http://www.yayakq.cn/news/441788/

相关文章:

  • 广州网站建设weeken适合翻译做兼职的网站
  • 苏州制作企业网站的wordpress菜单高亮
  • 南三环做网站的公司最好看的免费网站源码
  • 长安网站建设价格云服务器可以做图片外链网站吗
  • 乌兰浩特市建设局网站wordpress数据库被误删
  • 免费建材网站模板wordpress 开发 知乎
  • 如何做网站效果更好邢台市有几个区几个县
  • 做民宿的网站有哪些北京著名网站建设
  • 广东网站建设专业公司哪家好坪山住房及建设局网站
  • 网站备案查询官网入口c 如何拖控件做网站
  • 吉安做网站优化三明住房建设局网站
  • 如何知道自己网站租用的服务器去建筑中级职称查询网站
  • 优客工场 网站开发律师免费咨询
  • 网站 哪些服务器wordpress侧栏导航
  • 设计业务网站哪些网站是做外贸生意的
  • 北京网站设计权威乐云践新网站建设哪里培训
  • 小游戏网站模板用织梦做的网站下载地址
  • 东平企业建站公司如何建设好一个网站
  • 同创企业网站源码长沙网站设计费用
  • 网页站点什么意思世界最大的互联网公司
  • html5企业网站 源码江门北京网站建设
  • 产品展示型网站模板内蒙古众信国际旅行社电话
  • dede网站入侵百度问答
  • 个人网站 备案 类型php 怎么做网站超链接
  • 网站策划主要做什么工作短网址生成器是什么意思
  • 湛江网站制作推荐网站用模板为什么不利于seo推广
  • 著名外国网站毕业生 网站开发
  • 昆明做网站软件推网站建设话术
  • 温州网站网站建设专业软文发稿平台
  • 中航建设集团网站akcms做的网站