当前位置: 首页 > news >正文

免费高清图片素材网关键词优化app

免费高清图片素材网,关键词优化app,货代一般都去哪个网站找客户,网上银行登录入口9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程 前情回顾:9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程 摘要 YOLOYOLOv2YOLO9000YOLOv3基本思想使用一个端到端的卷积神经网络直接预测目标的类别和位置针对YOL…

9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程

前情回顾:9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程

摘要

YOLOYOLOv2YOLO9000YOLOv3
基本思想使用一个端到端的卷积神经网络直接预测目标的类别和位置针对YOLOv1的两个缺点进行改进可以实时地检测超过9000种物体,其主要贡献是使用检测数据集分类数据集进行联合训练在YOLOv2基础上进行改进,优化模型效果
优点相对于两阶段模型,YOLO实时性高,但检测精度稍低使用检测数据集分类数据集进行联合训练采用在YOLOv2基础上进行改进,优化模型效果进行联合训练,使其在小物体上也能获得很好的检测效果
输入图像448×448416×416
具体做法将输入图片划分成SxS的方格,每个方格需要检测出中心点位于该方格内的物体。在具体实施时,每个方格会预测B个边界框(包括位置、尺寸和置信度)1.批归一化(BN)层
2.在高精度的图片上调优(fine-tune)10个批次(batch)
3.k-means算法
4.直接在预先设定的锚框上提取特征
5.输入图像的尺寸:416×416
6.将不同大小的特征图结合起来进行物体检测
7.训练每隔10个批次就改变输入图片大小
8.DarkNet-19
字典树损失函数:二元交叉熵损失函数
主体网络参考 GoogLeNet,由24个卷积层和2个全连接层组成DarkNet-19
采用3x3的卷积核**,共有**19个卷积层和5个池化层
DarkNet-53(53个卷积层)
借鉴了残差网络的快捷连接(shortcut)结构
缺点低召回率、低定位准确率

1.YOLO

  • 基本思想:是使用一个端到端的卷积神经网络直接预测目标的类别和位置

  • 优点:相对于两阶段模型,YOLO实时性高,但检测精度稍低

  • 做法:YOLO将输入图片划分成SxS的方格,每个方格需要检测出中心点位于该方格内的物体。在具体实施时,每个方格会预测B个边界框(包括位置、尺寸和置信度)。

  • 主体:YOLO的主体网络结构参考 GoogLeNet,由24个卷积层和2个全连接层组成。

  • 缺点:低召回率、低定位准确率

2.YOLOv2

YOLOv2针对YOLO的两个缺点,即低召回率和低定位准确率,进行了一系列的改进,下面简单介绍其中的几点。
(1)YOLOv2在卷积层后面添加了批归一化(BN)层,以加快收敛速度,防止过拟合
(2)YOLOv2的卷积特征提取器在进行检测任务前,先在高精度的图片上调优(fine-tune)10个批次(batch),这样能使检测模型提前适应高分辨率图像
(3)YOLOv2采用k-means算法进行聚类获取先验锚框,并且聚类没有采用欧氏距离,而是有针对性地改进了距离的定义,即
d ( b o x , c e n t r o i d ) = 1 − I O U ( b o x , c e n t o r i d ) d(box,centroid)=1-IOU(box,centorid) d(box,centroid)=1IOU(box,centorid)
使其更适合于检测任务。
(4)YOLOv2直接在预先设定的锚框上提取特征。YOLO使用卷积神经网络作为特征提取器,在卷积神经网络之后加上全连接层来预测边界框的中心位置、大小和置信度;而YOLOv2借鉴了Faster R-CNN的思路,用卷积神经网络直接在锚点框上预测偏移量和置信度,该方法要比 YOLO更简单、更容易学习。
(5)YOLOv2将输入图像的尺寸从448x448变成416x416,这是因为在真实场景中,图片通常是以某个物体为中心,修改输入图像的尺寸后,将整幅图像经过卷积层后变成13x13(416/32=13)的特征图,长宽都是奇数,可以有效地识别出中心
(6)YOLOv2在13x13的特征图上检测物体,对于小物体检测这个精度还远远不够。因此,YOLOv2还将不同大小的特征图结合起来进行物体检测。具体来说,YOLOv2将最后一个池化层的输入26×26×512经过直通层变成13×13×2048的特征图,再与池化后的13×13×1024特征图结合在一起进行物体检测。
(7)YOLOv2 使用不同尺寸的图片同时训练网络。为了增强模型的鲁棒性,模型在训练过程中,每隔10个批次就改变输入图片的大小。
(8)YOLOv2使用新的卷积特征提取网络DarkNet-19。当时大多数检测模型的特征提取部分都采用VGGNet-16作为网络主体,VGGNet-16 虽然效果良好,但是参数过多,运行缓慢。DarkNet-19采用3x3的卷积核,共有19个卷积层和5个池化层

3.YOLO9000

YOLO9000可以实时地检测超过9000种物体,其主要贡献是使用检测数据集分类数据集进行联合训练

  • 检测数据集特点:相对于分类数据集来说,数据量小、类别少、类别粒度粗且获取困难,因此研究人员考虑使用分类和检测数据集进行联合训练,提高模型的泛化能力

  • 问题及解决:然而,一般分类数据集的标签粒度要远小于检测数据集的标签粒度,为了能够联合训练,YOLO9000 模型构建了字典树,合并 ImageNet的分类数据集标签与COCO的检测数据集标签。

4.YOLOv3

YOLOv3在YOLOv2的基础上进行了一些小的改动来优化模型的效果

  • 首先,检测数据可能存在一些语义上重叠的标签(如女人和人),但Softmax 函数基于一个假设,即每个检测框内的物体只存在一个类别。因此,YOLOv3使用二元交叉熵损失函数,而不是Softmax函数,这样可以更好地支持多标签的检测
  • 其次,YOLOv3采用了更深的网络作为特征提取器,即DarkNet-53,它包含了53个卷积层
  • 为了避免深层网络带来的梯度消失问题,DarkNet-53 借鉴了残差网络的快捷连接(shortcut)结构
  • 同时,YOLOv3还采用了3个不同大小的特征图进行联合训练,使其在小物体上也能获得很好的检测效果。

下集预告:9.1.4 有哪些措施可以增强模型对于小物体的检测效果?

参考文献:

《百面深度学习》 诸葛越 江云胜主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-53097-4

2020年7月第1版(2020年7月北京第二次印刷)

推荐阅读:

//好用小工具↓

分享一个免费的chat工具

分享一个好用的读论文的网站

// 深度学习经典网络↓

LeNet网络(1989年提出,1998年改进)

AlexNet网络(2012年提出)

VGGNet网络(2014年提出)

LeNet、AlexNet、VGGNet总结

GoogLeNet网络(2014年提出)

ResNet网络(2015年提出)

http://www.yayakq.cn/news/764916/

相关文章:

  • 秦皇岛市建设路小学网站舆情信息范文
  • 服装网站建设风格云南网站设计选哪家
  • 网站开发工具论文免费软件大全网址
  • 网站开发技术 创新点域名有了怎么建设网站
  • 网站建设 工作方案网络服务器的作用
  • 南京页面网站制作个人网站要不要备案
  • 婚纱摄影网站模板网站怎么做抽奖
  • 网站建设前期需要做出的准备外贸网站公司
  • 创新的营销型网站网站建设兆金手指排名
  • 怎么在四川建设厅网站上进行劳务合同备案网站开发中涉及的两种服务器
  • 文化类网站建设将网站做成logo怎么做
  • 中山制作网站的公司小辰青岛网站建设
  • 电脑去哪里建设网站10分钟免费建网站
  • 珠海网站建设的公司排名阿里云域名注册官网叫什么
  • 网站建设与维护里面的个人简历德州网站制作公司
  • 临沂网站建设企业星空影视文化传媒制作公司
  • 展厅网站945新开传奇网站
  • 网站版式有哪几种广州白云区今天的消息
  • 阜阳手机网站开发长春大型互联网公司
  • 网站备案是怎么回事开发者模式一直开着有危害吗
  • 别人做的网站不能用了教育行业网站设计
  • 在linux上做网站搭建帮网站做推广赚钱吗
  • 如何丰富网站内容网络服务提供者应当将该声明转送发出通知的权利人
  • 建设个人网站赚钱济南专业的设计网站
  • 竹子建站登录学校网站建设意义
  • 网站开发技术是什么重庆室内设计学校
  • 网站开发一般黄了购物网站名字
  • 避免网站 404广告在线设计制作
  • 专门做研究美股的财经网站2019建设摩托官方网站
  • 淮南定制网站建设公司网站注册商标属于哪一类