当前位置: 首页 > news >正文

学校网站建设命名教学网站的设计

学校网站建设命名,教学网站的设计,国外做免费网站的,玩转wordpress决策树是属于有监督机器学习的一种决策树算法实操: from sklearn.tree import DecisionTreeClassifier # 决策树算法 model DecisionTreeClassifier(criterionentropy,max_depthd) model.fit(X_train,y_train)1、决策树概述 决策树是属于有监督机器学习的一种,起源…

  • 决策树是属于有监督机器学习的一种
  • 决策树算法实操:
from sklearn.tree import DecisionTreeClassifier
# 决策树算法
model = DecisionTreeClassifier(criterion='entropy',max_depth=d)
model.fit(X_train,y_train)


1、决策树概述

决策树是属于有监督机器学习的一种,起源非常早,符合直觉并且非常直观,模仿人类做决策的过程,早期人工智能模型中有很多应用,现在更多的是使用基于决策树的一些集成学习的算法。这一章我们把决策树算法理解透彻了,非常有利于后面去学习集成学习

1.1、示例一

上表根据历史数据,记录已有的用户是否可以偿还债务,以及相关的信息。通过该数据,构建的决策树如下:

 1.2、决策树算法特点

  • 可以处理 非线性的问题

  • 可解释性强,没有方程系数

  • 模型简单,模型预测效率高 if else

2、DecisionTreeClassifier使用

2.1、算例介绍

账号是否真实跟属性:日志密度、好友密度、是否使用真实头像有关系~

2.2、构建决策树并可视化

数据创建

import numpy as np
import pandas as pd
y = np.array(list('NYYYYYNYYN'))
print(y)
X = pd.DataFrame({'日志密度':list('sslmlmmlms'),'好友密度':list('slmmmlsmss'),'真实头像':list('NYYYYNYYYY'),'真实用户':y})

数据调整

X['日志密度'] = X['日志密度'].map({'s':0,'m':1,'l':2})
X['好友密度'] = X['好友密度'].map({'s':0,'m':1,'l':2})
X['真实头像'] = X['真实头像'].map({'N':0,'Y':1})
X['真实用户'] = X['真实用户'].map({'N':0,'Y':1})

 模型训练可视化

import matplotlib.pyplot as plt
from sklearn import tree
# 使用信息熵,作为分裂标准
model = DecisionTreeClassifier(criterion='entropy')
model.fit(X,y)
plt.rcParams['font.family'] = 'STKaiti'
plt.figure(figsize=(12,16))
fn = X.columns
_ = tree.plot_tree(model,filled = True,feature_names=fn)
plt.savefig('./iris.jpg')

2.3、信息熵

  • 构建好一颗树,数据变的有顺序了(构建前,一堆数据,杂乱无章;构建一颗,整整齐齐,顺序),用什么度量衡表示,数据是否有顺序:信息熵 。

  • 物理学,热力学第二定律(熵),描述的是封闭系统的混乱程度 。

2.4、信息增益

信息增益是知道了某个条件后,事件的不确定性下降的程度。写作 g(X,Y)。它的计算方式为熵减去条件熵,如下:

​​\bg_white \small g(X,y) \rm = H(Y) - H(Y|X)

表示的是,知道了某个条件后,原来事件不确定性降低的幅度。

2.5、手动计算实现决策树分类

s = X['真实用户']
p = s.value_counts()/s.size
(p * np.log2(1/p)).sum()   # 0.8812908992306926
x = X['日志密度'].unique()
x.sort()
# 如何划分呢,分成两部分
for i in range(len(x) - 1):split = x[i:i+2].mean()cond = X['日志密度'] <= split# 概率分布p = cond.value_counts()/cond.size# 按照条件划分,两边的概率分布情况indexs =p.indexentropy = 0for index in indexs:user = X[cond == index]['真实用户']p_user = user.value_counts()/user.sizeentropy += (p_user * np.log2(1/p_user)).sum() * p[index]print(split,entropy)
columns = ['日志密度','好友密度','真实头像']
lower_entropy = 1
condition = {}
for col in columns:x = X[col].unique()x.sort()print(x)# 如何划分呢,分成两部分for i in range(len(x) - 1):split = x[i:i+2].mean()cond = X[col] <= split# 概率分布p = cond.value_counts()/cond.size# 按照条件划分,两边的概率分布情况indexs =p.indexentropy = 0for index in indexs:user = X[cond == index]['真实用户']p_user = user.value_counts()/user.sizeentropy += (p_user * np.log2(1/p_user)).sum() * p[index]print(col,split,entropy)if entropy < lower_entropy:condition.clear()lower_entropy = entropycondition[col] = split
print('最佳列分条件是:',condition)


3、决策树分裂指标

常用的分裂条件时:

  • 信息增益

  • Gini系数

  • 信息增益率

  • MSE(回归问题)

3.1、信息熵(ID3)

在信息论里熵叫作信息量,即熵是对不确定性的度量。从控制论的角度来看,应叫不确定性。信息论的创始人香农在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。

对应公式:

H(x) = -\sum\limits_{i = 1}^n p(x)log_2p(x)

3.2、Gini系数(CART)

基尼系数是指国际上通用的、用以衡量一个国家或地区居民收入差距的常用指标。

基尼系数最大为“1”,最小等于“0”。基尼系数越接近 0 表明收入分配越是趋向平等。国际惯例把 0.2 以下视为收入绝对平均,0.2-0.3 视为收入比较平均;0.3-0.4 视为收入相对合理;0.4-0.5 视为收入差距较大,当基尼系数达到 0.5 以上时,则表示收入悬殊。

3.3、MSE

用于回归树,后面章节具体介绍

 4、鸢尾花分类代码实战

4.1、决策树分类鸢尾花数据集

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import tree
import matplotlib.pyplot as pltX,y = datasets.load_iris(return_X_y=True)# 随机拆分
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 256)# max_depth调整树深度:剪枝操作
# max_depth默认,深度最大,延伸到将数据完全划分开为止。
model = DecisionTreeClassifier(max_depth=None,criterion='entropy')
model.fit(X_train,y_train)
y_ = model.predict(X_test)
print('真实类别是:',y_test)
print('算法预测是:',y_)
print('准确率是:',model.score(X_test,y_test))
# 决策树提供了predict_proba这个方法,发现这个方法,返回值要么是0,要么是1
model.predict_proba(X_test)

 4.2、决策树可视化

import graphviz
from sklearn import tree
from sklearn import datasets
# 导出数据
iris = datasets.load_iris(return_X_y=False)
dot_data = tree.export_graphviz(model,feature_names=fn,class_names=iris['target_names'],# 类别名filled=True, # 填充颜色rounded=True,)
graph = graphviz.Source(dot_data)
graph.render('iris')

4.3、选择合适的超参数并可视化  

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import tree
import matplotlib.pyplot as pltX,y = datasets.load_iris(return_X_y=True)# 随机拆分
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 256)
depth = np.arange(1,16)
err = []
for d in depth:model = DecisionTreeClassifier(criterion='entropy',max_depth=d)model.fit(X_train,y_train)score = model.score(X_test,y_test)err.append(1 - score)print('错误率为%0.3f%%' % (100 * (1 - score)))
plt.rcParams['font.family'] = 'STKaiti'
plt.plot(depth,err,'ro-')
plt.xlabel('决策树深度',fontsize = 18)
plt.ylabel('错误率',fontsize = 18)
plt.title('筛选合适决策树深度')
plt.grid()
plt.savefig('./14-筛选超参数.png',dpi = 200)

http://www.yayakq.cn/news/564599/

相关文章:

  • 网站页面的优化wordpress 加载中动画
  • 免费的源码网站有哪些wordpress问题插件
  • 网站开发技术路线图水利建设公共服务平台网站
  • 网页设计素材网站花茶叶市场网站建设方案
  • 朝阳住房和城乡建设厅网站百度网站标题优化
  • 大连网站策划做旅游网站需要注意什么
  • 网站建设学费要多少wordpress对外发邮件
  • 网站界面ui设计国家开放大学答案怎么查看网站点击量
  • 网站后台管理系统界面一个商城
  • 网站数据库怎么做同步芜湖seo网站优化
  • 域名备案后网站打不开长沙小程序开发销售
  • 广宁网站建设公司wordpress主题还原
  • 做招牌的网站有哪些微网站菜单
  • 国外做二手服装网站有哪些问题简 wordpress 主题
  • 进入微信官方网站下载响应式网站手机端
  • python做音乐网站wordpress行业模板
  • 网站更新前知道内容wordpress网站加载过慢
  • 五个网站网络推广方式的研究
  • 华强方特网站开发中国建设银行员工学习网站
  • 销售网站怎么做中山高端网站建设公司
  • 遇到钓鱼网站怎么做规划电子商务网站建设方案
  • wordpress编辑作者投稿者英文杭州seo平台
  • 个人做的卖货网站网站建设公司需要申请icp吗
  • 柳州网站优化公司济南口碑最好的装修公司
  • 哪个网站做的效果图好access2003做网站
  • 该怎么跟程序员谈做网站可信网站 quot 验证能防范哪些安全.
  • 凡科网做网站好吗wordpress站点设置使用时间
  • 邹平网站定制辽宁建设建设工程信息网
  • 健康咨询类网站模板小程序注册量
  • 游戏充值网站怎么做钻探公司宣传册设计样本