当前位置: 首页 > news >正文

网站手机版怎么弄vs网站开发教程

网站手机版怎么弄,vs网站开发教程,wordpress h5主题,手机怎么注册网站模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外&#xff0…

模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外,选择合适的评价指标对于不同类型的任务至关重要。

交叉验证

交叉验证的主要目的是减少由于数据划分带来的偏差,并提供更可靠的性能估计。常见的交叉验证方法包括K折交叉验证(K-Fold Cross-Validation)和留一法交叉验证(Leave-One-Out Cross-Validation)。

示例:使用K折交叉验证评估分类模型

假设二分类问题,将使用K折交叉验证来评估一个随机森林分类器的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix# 加载数据
data = pd.read_csv('binary_classification_data.csv')
X = data.drop('target', axis=1)
y = data['target']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义分类器
classifier = RandomForestClassifier(random_state=42)# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(classifier, X_train, y_train, cv=kfold, scoring='accuracy')print("Cross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", np.mean(cv_scores))# 训练最终模型
classifier.fit(X_train, y_train)# 在测试集上评估
y_pred = classifier.predict(X_test)# 计算各种评价指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)print(f"Test Set Accuracy: {accuracy:.4f}")
print(f"Test Set Precision: {precision:.4f}")
print(f"Test Set Recall: {recall:.4f}")
print(f"Test Set F1 Score: {f1:.4f}")
print("Confusion Matrix:\n", conf_matrix)

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义分类器

    • 创建一个随机森林分类器实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算准确率。
  • 训练最终模型

    • 使用整个训练集训练最终的分类器。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括准确率、精确度、召回率、F1分数和混淆矩阵。
回归任务的评估

对于回归任务,常用的评价指标包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)等。

示例:使用K折交叉验证评估回归模型

假设房价预测问题使用K折交叉验证来评估一个线性回归模型的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 加载数据
data = pd.read_csv('house_prices.csv')
X = data.drop('price', axis=1)
y = data['price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义回归器
regressor = LinearRegression()# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(regressor, X_train, y_train, cv=kfold, scoring='neg_mean_squared_error')print("Cross-Validation MSE Scores (negative values):", cv_scores)
print("Mean CV MSE (positive value):", -np.mean(cv_scores))# 训练最终模型
regressor.fit(X_train, y_train)# 在测试集上评估
y_pred = regressor.predict(X_test)# 计算各种评价指标
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Test Set MSE: {mse:.4f}")
print(f"Test Set MAE: {mae:.4f}")
print(f"Test Set R^2: {r2:.4f}")

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义回归器

    • 创建一个线性回归模型实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算负均方误差(因为cross_val_score默认返回的是负值以方便排序)。
  • 训练最终模型

    • 使用整个训练集训练最终的回归模型。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)。
http://www.yayakq.cn/news/500418/

相关文章:

  • 北京网站建设公司排名钓鱼网站制作的报告
  • 建设银行网站怎么取消短信服务网站静态模板下载
  • 保定企业制作网站上海网站建设天锐科技
  • 医疗网站建设平台价格公司网站二维码怎么做
  • 坪地网站建设公司汽车报价软件排行榜
  • 网站模板 黑色最新旅游热点
  • 哈尔滨网站建设网站龙采哈尔滨建站公司
  • 删除西部数码网站管理助手wordpress分类含有中文
  • 手机自己怎么建电影网站线上推广有哪些平台效果好
  • 嘉兴seo网站推广凡科网站怎么做外链
  • 查询网站空间商做内衣模特接广告网站
  • 网站频道策划wordpress 写插件吗
  • 有了阿里云服务器怎么做网站个人邮箱申请
  • 运城做网站要多少钱赣州网页制作公司
  • 标准型网站---北京网站建设内江市网站建设培训
  • 合肥电子商务网站建设广东省建设厅的注册中心网站首页
  • 软件公司宣传册设计样本关键词seo排名怎么样
  • 怎么给网站做友情链接最好的网站设计公司
  • 网站建设怎样外国的html 素材网站
  • 网站代理什么意思用h5开发的网站模板
  • 免费网站后台管理系统htmlwordpress首部如何添加自定义代码
  • 青色系网站常州网站推广软件厂家
  • iis网站在点默认文档的时候报错.个人简历制作网站
  • 宁德营销型网站建设厦门网站建设公司排名
  • 关键词挖掘站网做co网站
  • 个性化网站建设报价a标签下载wordpress
  • 云南网站建设及优化设计需求网站
  • 网站视频弹窗代码深圳哪家网页设计好
  • 刷会员网站怎么做做汽车销售要了解的网站
  • 高唐网站建设公司2022知名品牌营销案例100例