当前位置: 首页 > news >正文

广州网站设计服务商计算机网络网站开发

广州网站设计服务商,计算机网络网站开发,软件开发工程师中级职称,建设银行手机个人网站逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。 本篇来推导一下逻辑回归的代价函数。 首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率…

逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。

本篇来推导一下逻辑回归的代价函数。

首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率。模型的形式是一个S形的逻辑函数(sigmoid函数),但是sigmoid函数的参数到底要选哪个,就需要对sigmoid函数的结果进行评判,因此也就需要第二步:损失评估。

举个例子:

假设我们有一个逻辑回归模型,用来预测学生是否会通过最终考试。我们有两个特征:学生的出勤率和平均成绩。模型的目标是基于这些特征预测学生是否会通过考试("通过"记为1,"不通过"记为0)。

特征和参数
  • 假设特征向量 x = [ x 1 x 2 ] x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2],其中 x 1 x_1 x1是学生的出勤率, x 2 x_2 x2是学生的平均成绩。
  • 模型的参数为 θ = [ θ 0 θ 1 θ 2 ] \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} θ= θ0θ1θ2 ,其中 θ 0 \theta_0 θ0是偏置项, θ 1 \theta_1 θ1 θ 2 \theta_2 θ2分别是与出勤率和平均成绩相关的权重。
计算 h ( x ) h(x) h(x)

模型会计算 h ( x ) h(x) h(x),即给定特征时通过考试的预测概率。这是通过sigmoid函数来完成的:

h θ ( x ) = 1 1 + e − ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_\theta(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}} hθ(x)=1+e(θ0+θ1x1+θ2x2)1

假设对于一个特定学生,出勤率 x 1 = 0.85 x_1 = 0.85 x1=0.85(85%),平均成绩 x 2 = 75 x_2 = 75 x2=75,而模型参数为 θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05。那么 h ( x ) h(x) h(x)的计算为:

h θ ( x ) = 1 1 + e − ( − 4 + 10 × 0.85 + 0.05 × 75 ) h_\theta(x) = \frac{1}{1 + e^{-(-4 + 10 \times 0.85 + 0.05 \times 75)}} hθ(x)=1+e(4+10×0.85+0.05×75)1

计算这个表达式的值(这需要一些数学运算),假设结果是 h θ ( x ) ≈ 0.76 h_\theta(x) \approx 0.76 hθ(x)0.76。这意味着根据我们的模型,这个学生通过考试的预测概率是 76%。基于这个预测,由于概率大于0.5,我们可以预测这个学生会通过考试。

到这一步为止, θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05实际上是我们随机(或经验)取的一组参数数值,但其并不是最佳的,所以就需要有一个代价函数来判断整体的损失(正确率),再进行梯度下降(或其他优化算法)来迭代地调整这些参数,以获得最小化损失。

在逻辑回归中,由于目标结果只有0和1两种情况,因此去计算一组数据的损失的时候就需要区分成两个函数

当 y=1 时的损失函数

Cost when  y = 1 : − log ⁡ ( h θ ( x ) ) \text{Cost when } y = 1: -\log(h_\theta(x)) Cost when y=1:log(hθ(x))

当 y=0 时的损失函数

Cost when  y = 0 : − log ⁡ ( 1 − h θ ( x ) ) \text{Cost when } y = 0: -\log(1 - h_\theta(x)) Cost when y=0:log(1hθ(x))
对应的图如下:
在这里插入图片描述
用一个式子来同时包含这两个情况就是我们的逻辑回归的代价函数(交叉熵损失):
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(h_\theta(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) \right] J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
我们可以看到这里 l o g ( h θ ( x ( i ) ) ) log(h_\theta(x^{(i)})) log(hθ(x(i)))前面乘以了 y ( i ) y^{(i)} y(i),所以当目标值为0的时候,这部分就变成了0,也就不会影响后面部分的计算,就很简单地实现了两个式子融合。

http://www.yayakq.cn/news/176775/

相关文章:

  • 网站和后台建设手机版的网站怎么做
  • 航佳网站建设公司邮箱名称
  • 无锡企业网站制作价格银川网站建设价格
  • 全国建筑人才求职招聘网站泰安网站建设收费标准
  • 设计师做兼职的网站有哪些百度渠道开户哪里找
  • 电商网站平台宜昌电子商城网站建设
  • 装修网站线怎样做dede网站怎么做单页面
  • 高水平高职建设网站金蝶进销存软件免费版
  • ssh蒙语网站开发网站软文代写
  • 深圳网站建设制作公司网页设计结论与心得
  • 做网站运营需要注意哪些问题潮汕学院网站开发
  • 黄冈个人网站建设平台wordpress 媒体文件库
  • 企业网站网络推广松岗做网站哪家便宜
  • 网站设计怎么做ppt答辩国外网站加速
  • 哪里有免费 建设网站的地址怎么做网页宣传
  • 网站制作价格app开发定制公司哪家
  • 网站seo优化如何做外贸线上推广
  • 搭建网站需要做什么网页游戏排行2020前十名
  • 网站建设步骤实践报告wordpress分类目录样式
  • 网站建设的可行性分析百度搜索网页版入口
  • 不侵权的图片素材网站wordpress配置.htacess
  • 多语言网站制作长春站最新通知
  • 科技公司企业网站建设石家庄网站搭建公司
  • 福清手机网站建设泰宁县建设局网站
  • 网站审核员做点啥在哪里买空间做网站
  • 多与pR值高的网站做链接游戏开服表网站开发
  • 友点企业网站wordpress 不检查更新
  • 用dw做简单图片网站大望路做网站的公司
  • 广东网站备案进度查询女孩子做网站推广
  • 广东工程建设咨询有限公司网站织梦 网站名称