当前位置: 首页 > news >正文

成都商报官方网站南京产品设计公司

成都商报官方网站,南京产品设计公司,静态网页文件的扩展名,投资10元1小时赚百元hhsearch 是 HMM-HMM(Hidden Markov Model to Hidden Markov Model)比对方法的一部分,属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对,特别适用于检测远缘同源性。 以下是 hhsearch 的一些主要特点和用途: HMM…

hhsearch 是 HMM-HMM(Hidden Markov Model to Hidden Markov Model)比对方法的一部分,属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对,特别适用于检测远缘同源性。

以下是 hhsearch 的一些主要特点和用途:

  1. HMM-HMM比对: hhsearch 使用隐藏马尔可夫模型(HMM)来表示蛋白质家族的模型。与传统的序列-序列比对方法不同,HMM-HMM比对考虑了氨基酸残基的多序列信息,使得在比对中能够更好地捕捉蛋白质家族的模式和结构。

  2. 检测远缘同源性: hhsearch 的一个主要优势是其能够检测到相对远离的同源关系。它在比对中引入了更多的信息,从而提高了对远缘同源蛋白的发现能力。

  3. 灵敏度和特异性: hhsearch 的设计旨在在维持高灵敏度的同时,减少假阳性的比对。这使得它在寻找结构和功能相似性时更为可靠。

  4. 数据库搜索: 用户可以使用 hhsearch 在大型蛋白质数据库中搜索与给定蛋白质序列相似的蛋白质。

"""Library to run HHsearch from Python."""import glob
import os
import subprocess
from typing import Sequence, Optional, List, Iterable
from absl import logging
import contextlib
import tempfile
import dataclasses
import contextlib
import time
import shutil
import re@contextlib.contextmanager
def timing(msg: str):logging.info('Started %s', msg)tic = time.time()yieldtoc = time.time()logging.info('Finished %s in %.3f seconds', msg, toc - tic)@dataclasses.dataclass(frozen=True)
class TemplateHit:"""Class representing a template hit."""index: intname: straligned_cols: intsum_probs: Optional[float]query: strhit_sequence: strindices_query: List[int]indices_hit: List[int]@contextlib.contextmanager
def tmpdir_manager(base_dir: Optional[str] = None):"""Context manager that deletes a temporary directory on exit."""tmpdir = tempfile.mkdtemp(dir=base_dir)try:yield tmpdirfinally:shutil.rmtree(tmpdir, ignore_errors=True)def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:"""Parses the content of an entire HHR file."""lines = hhr_string.splitlines()# Each .hhr file starts with a results table, then has a sequence of hit# "paragraphs", each paragraph starting with a line 'No <hit number>'. We# iterate through each paragraph to parse each hit.block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]hits = []if block_starts:block_starts.append(len(lines))  # Add the end of the final block.for i in range(len(block_starts) - 1):hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))return hitsdef _parse_hhr_hit(detailed_lines: Sequence[str]) -> TemplateHit:"""Parses the detailed HMM HMM comparison section for a single Hit.This works on .hhr files generated from both HHBlits and HHSearch.Args:detailed_lines: A list of lines from a single comparison section between 2sequences (which each have their own HMM's)Returns:A dictionary with the information from that detailed comparison sectionRaises:RuntimeError: If a certain line cannot be processed"""# Parse first 2 lines.number_of_hit = int(detailed_lines[0].split()[-1])name_hit = detailed_lines[1][1:]# Parse the summary line.pattern = ('Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '']*Template_Neff=(.*)')match = re.match(pattern, detailed_lines[2])if match is None:raise RuntimeError('Could not parse section: %s. Expected this: \n%s to contain summary.' %(detailed_lines, detailed_lines[2]))(_, _, _, aligned_cols, _, _, sum_probs, _) = [float(x)for x in match.groups()]# The next section reads the detailed comparisons. These are in a 'human# readable' format which has a fixed length. The strategy employed is to# assume that each block starts with the query sequence line, and to parse# that with a regexp in order to deduce the fixed length used for that block.query = ''hit_sequence = ''indices_query = []indices_hit = []length_block = Nonefor line in detailed_lines[3:]:# Parse the query sequence lineif (line.startswith('Q ') and not line.startswith('Q ss_dssp') andnot line.startswith('Q ss_pred') andnot line.startswith('Q Consensus')):# Thus the first 17 characters must be 'Q <query_name> ', and we can parse# everything after that.#              start    sequence       end       total_sequence_lengthpatt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)'groups = _get_hhr_line_regex_groups(patt, line[17:])# Get the length of the parsed block using the start and finish indices,# and ensure it is the same as the actual block length.start = int(groups[0]) - 1  # Make index zero based.delta_query = groups[1]end = int(groups[2])num_insertions = len([x for x in delta_query if x == '-'])length_block = end - start + num_insertionsassert length_block == len(delta_query)# Update the query sequence and indices list.query += delta_query_update_hhr_residue_indices_list(delta_query, start, indices_query)elif line.startswith('T '):# Parse the hit sequence.if (not line.startswith('T ss_dssp') andnot line.startswith('T ss_pred') andnot line.startswith('T Consensus')):# Thus the first 17 characters must be 'T <hit_name> ', and we can# parse everything after that.#              start    sequence       end     total_sequence_lengthpatt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)'groups = _get_hhr_line_regex_groups(patt, line[17:])start = int(groups[0]) - 1  # Make index zero based.delta_hit_sequence = groups[1]assert length_block == len(delta_hit_sequence)# Update the hit sequence and indices list.hit_sequence += delta_hit_sequence_update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)return TemplateHit(index=number_of_hit,name=name_hit,aligned_cols=int(aligned_cols),sum_probs=sum_probs,query=query,hit_sequence=hit_sequence,indices_query=indices_query,indices_hit=indices_hit,)def _get_hhr_line_regex_groups(regex_pattern: str, line: str) -> Sequence[Optional[str]]:match = re.match(regex_pattern, line)if match is None:raise RuntimeError(f'Could not parse query line {line}')return match.groups()def _update_hhr_residue_indices_list(sequence: str, start_index: int, indices_list: List[int]):"""Computes the relative indices for each residue with respect to the original sequence."""counter = start_indexfor symbol in sequence:if symbol == '-':indices_list.append(-1)else:indices_list.append(counter)counter += 1class HHSearch:"""Python wrapper of the HHsearch binary."""def __init__(self,*,binary_path: str,databases: Sequence[str],maxseq: int = 1_000_000):"""Initializes the Python HHsearch wrapper.Args:binary_path: The path to the HHsearch executable.databases: A sequence of HHsearch database paths. This should be thecommon prefix for the database files (i.e. up to but not including_hhm.ffindex etc.)maxseq: The maximum number of rows in an input alignment. Note that thisparameter is only supported in HHBlits version 3.1 and higher.Raises:RuntimeError: If HHsearch binary not found within the path."""self.binary_path = binary_pathself.databases = databasesself.maxseq = maxseq#for database_path in self.databases:#  if not glob.glob(database_path + '_*'):#    logging.error('Could not find HHsearch database %s', database_path)#    raise ValueError(f'Could not find HHsearch database {database_path}')@propertydef output_format(self) -> str:return 'hhr'@propertydef input_format(self) -> str:return 'a3m'def query(self, a3m: str) -> str:"""Queries the database using HHsearch using a given a3m."""with tmpdir_manager() as query_tmp_dir:input_path = os.path.join(query_tmp_dir, 'query.a3m')hhr_path = os.path.join(query_tmp_dir, 'output.hhr')with open(input_path, 'w') as f:f.write(a3m)db_cmd = []for db_path in self.databases:db_cmd.append('-d')db_cmd.append(db_path)cmd = [self.binary_path,'-i', input_path,'-o', hhr_path,'-maxseq', str(self.maxseq)] + db_cmdprint("cmd:",cmd)logging.info('Launching subprocess "%s"', ' '.join(cmd))process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)with timing('HHsearch query'):stdout, stderr = process.communicate()retcode = process.wait()if retcode:# Stderr is truncated to prevent proto size errors in Beam.raise RuntimeError('HHSearch failed:\nstdout:\n%s\n\nstderr:\n%s\n' % (stdout.decode('utf-8'), stderr[:100_000].decode('utf-8')))with open(hhr_path) as f:hhr = f.read()return hhrdef get_template_hits(self,output_string: str,input_sequence: str) -> Sequence[TemplateHit]:"""Gets parsed template hits from the raw string output by the tool."""del input_sequence  # Used by hmmseach but not needed for hhsearch.return parse_hhr(output_string)def convert_stockholm_to_a3m (stockholm_format: str,max_sequences: Optional[int] = None,remove_first_row_gaps: bool = True) -> str:"""Converts MSA in Stockholm format to the A3M format."""descriptions = {}sequences = {}reached_max_sequences = Falsefor line in stockholm_format.splitlines():reached_max_sequences = max_sequences and len(sequences) >= max_sequencesif line.strip() and not line.startswith(('#', '//')):# Ignore blank lines, markup and end symbols - remainder are alignment# sequence parts.seqname, aligned_seq = line.split(maxsplit=1)if seqname not in sequences:if reached_max_sequences:continuesequences[seqname] = ''sequences[seqname] += aligned_seqfor line in stockholm_format.splitlines():if line[:4] == '#=GS':# Description row - example format is:# #=GS UniRef90_Q9H5Z4/4-78            DE [subseq from] cDNA: FLJ22755 ...columns = line.split(maxsplit=3)seqname, feature = columns[1:3]value = columns[3] if len(columns) == 4 else ''if feature != 'DE':continueif reached_max_sequences and seqname not in sequences:continuedescriptions[seqname] = valueif len(descriptions) == len(sequences):break# Convert sto format to a3m line by linea3m_sequences = {}if remove_first_row_gaps:# query_sequence is assumed to be the first sequencequery_sequence = next(iter(sequences.values()))query_non_gaps = [res != '-' for res in query_sequence]for seqname, sto_sequence in sequences.items():# Dots are optional in a3m format and are commonly removed.out_sequence = sto_sequence.replace('.', '')if remove_first_row_gaps:out_sequence = ''.join(_convert_sto_seq_to_a3m(query_non_gaps, out_sequence))a3m_sequences[seqname] = out_sequencefasta_chunks = (f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}"for k in a3m_sequences)return '\n'.join(fasta_chunks) + '\n'  # Include terminating newlinedef _convert_sto_seq_to_a3m(query_non_gaps: Sequence[bool], sto_seq: str) -> Iterable[str]:for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):if is_query_res_non_gap:yield sequence_reselif sequence_res != '-':yield sequence_res.lower()if __name__ == "__main__":### 1. 准备输入数据## 输入序列先通过Jackhmmer多次迭代从uniref90,MGnify数据库搜索同源序列,输出的多序列比对文件(如globins4.sto),转化为a3m格式后,再通过hhsearch从pdb数据库中找到同源序列input_fasta_file = '/home/zheng/test/Q94K49.fasta'## input_sequencewith open(input_fasta_file) as f:input_sequence = f.read()test_templates_sto_file = "/home/zheng/test/Q94K49_aln.sto"with open(test_templates_sto_file) as f:test_templates_sto = f.read()## sto格式转a3m格式()test_templates_a3m = convert_stockholm_to_a3m(test_templates_sto)hhsearch_binary_path = "/home/zheng/software/hhsuite-3.3.0-SSE2-Linux/bin/hhsearch"### 2.类实例化# scop70_1.75文件名前缀scop70_database_path = "/home/zheng/database/scop70_1.75_hhsuite3/scop70_1.75"pdb70_database_path = "/home/zheng/database/pdb70_from_mmcif_latest/pdb70"#hhsuite数据库下载地址:https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/  ## 单一数据库#template_searcher = HHSearch(binary_path = hhsearch_binary_path,#                             databases = [scop70_database_path])## 多个数据库database_lst = [scop70_database_path, pdb70_database_path]template_searcher = HHSearch(binary_path = hhsearch_binary_path,databases = database_lst) ### 3. 同源序列搜索## 搜索结果返回.hhr文件字符串templates_result = template_searcher.query(test_templates_a3m)print(templates_result)## pdb序列信息列表template_hits = template_searcher.get_template_hits(output_string=templates_result, input_sequence=input_sequence)print(template_hits)

http://www.yayakq.cn/news/944016/

相关文章:

  • 寮步镇网站建设公司重庆网站建设费用
  • 银行内部网站建设建议wordpress工具
  • 网站建设与管理专业找暑假工网站论坛怎么做
  • 自己搭建服务器做网站网站维护项目
  • 做网站怎么设置背景wordpress快速建站视频教程
  • 高职教育双高建设网站万词优化
  • 慈溪做无痛同济 网站网页美工设计哪家好
  • 深圳移动官网网站建设网站建设的前端开发和后端开发
  • 麦包包的网站建设分析wordpress图片被强制放大
  • 外贸网站怎么做seo优化云南热搜科技做网站不给源码
  • 汕头网站建设制作报价文化建设的重要性和意义
  • 网站建设请示自主建设网站的意义
  • 建设银行演示网站网络营销型企业网站案例
  • html论坛网站模板国外空间网站备案
  • 济南网络建站和淘宝同时做电商的网站
  • 网站作业二级网页wordpress博客注册
  • 万网域名申请网站手机自己怎么建电影网站
  • 河北建设工程信息网站衡阳商城网站建设
  • 做电子请柬的网站建立网站大概投入
  • seo两个域名一个网站有影响做网站的价
  • 一起做网站广州广西网站建设设计
  • 中国的网站域名是什么可以做简单小活动的网站
  • 网站建设需要多少g合适京东商城官网自营店
  • 网站加速工具做网站兼容性怎么设置
  • 中英双语网站模板网站优化免费软件
  • 高端网站开发建设ui设计师面试自我介绍
  • 创建网站用英语怎么说微分销商城系统
  • 校园交友的网站建设wordpress 文章列表插件
  • 如何本地搭建自己的网站爬墙专用加速器
  • 蓝牙 技术支持 东莞网站建设如何建设网站的外接 以及在增加外接的时应当注意什么