当前位置: 首页 > news >正文

怎么把一个网站的信息都抓取下来html5 手机 手机网站

怎么把一个网站的信息都抓取下来,html5 手机 手机网站,广州网站设计实力乐云seo,网络营销是营销的网络化吗先导:一般情况下的期望最大化(EM)算法 期望-最大化(EM 算法)是在有“隐藏”变量的模型中实现最大似然估计。EM 算法是一种迭代算法,它保证收敛到似然函数的局部最大值。 用 X X X表示观测随机变量&#xf…

先导:一般情况下的期望最大化(EM)算法


期望-最大化(EM 算法)是在有“隐藏”变量的模型中实现最大似然估计。EM 算法是一种迭代算法,它保证收敛到似然函数的局部最大值。

X X X表示观测随机变量, Z Z Z表示隐随机变量。 X X X Z Z Z一起称为完全数据(complete-data),观测数据 X X X又称为不完全数据(incomplete-data)。假设给定观测数据 X X X,其概率分布是 P ( X ∣ θ ) P(X\mid\theta) P(Xθ),其中 θ \theta θ是需要估计的模型参数,那么不完全数据 X X X的似然函数是 P ( X ∣ θ ) P(X\mid\theta) P(Xθ),对数似然函数 L ( θ ; X ) = ln ⁡ P ( X ∣ θ ) L(\theta;X) = \ln P(X\mid\theta) L(θ;X)=lnP(Xθ);假设 X X X Z Z Z的联合概率分布是 P ( X , Z ∣ θ ) P(X,Z\mid\theta) P(X,Zθ),那么完全数据的对数似然函数是 L ( θ ; X , Z ) = ln ⁡ P ( X , Z ∣ θ ) L(\theta;X,Z) =\ln P(X,Z\mid\theta) L(θ;X,Z)=lnP(X,Zθ)

EM 算法通过迭代求 L ( θ ) = ln ⁡ P ( X ∣ θ ) L(\theta) = \ln P(X\mid\theta) L(θ)=lnP(Xθ)的极大似然估计。每次迭代包含两步:E 步,求期望;M 步,求极大化。

为了简化,假设 Z Z Z 是离散的(这是 GMM 中的情况)。

由于 Z Z Z 不可直接获得,因此完全似然 P ( X , Z ∣ θ ) P(X,Z\mid\theta) P(X,Zθ) 也不是直接可用的,EM 算法提出考虑替代函数

Q ( θ ∣ X , θ ( i ) ) = E Z ( L ( θ ; X , Z ) ∣ X , θ ( i ) ) = E Z [ ln ⁡ P ( X , Z ∣ θ ) ∣ X , θ ( i ) ] = ∑ Z ln ⁡ P ( X , Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) (13) \begin{aligned}Q(\theta \mid X,\theta^{(i)}) &={E}_Z (L(\theta; X, Z) \mid X, \theta^{(i)}) \\&= E_Z[\ln P(X, Z \mid \theta) \mid X, \theta^{(i)}]\\ &= \sum_Z \ln P(X, Z \mid \theta) P(Z \mid X, \theta^{(i)}) \tag{13} \end{aligned} Q(θX,θ(i))=EZ(L(θ;X,Z)X,θ(i))=EZ[lnP(X,Zθ)X,θ(i)]=ZlnP(X,Zθ)P(ZX,θ(i))(13)

其中, θ ( i ) \theta^{(i)} θ(i) θ \theta θ 的当前估计。式 (13) 中的分数 Q ( θ ∣ X , θ ( i ) ) Q(\theta \mid X,\theta^{(i)}) Q(θX,θ(i)) P ( X , Z ∣ θ ) P(X,Z\mid\theta) P(X,Zθ) 在当前的估计值 θ ( i ) \theta^{(i)} θ(i) 下,对于给定 X X X Z Z Z 的条件分布的期望值。因此,未知的隐藏变量 Z Z Z 被期望“平均化”了。


式 (9) 的函数 Q ( θ ∣ X , θ ( i ) ) Q(\theta \mid X,\theta^{(i)}) Q(θX,θ(i))是 EM 算法的核心,称为 Q Q Q函数 ( Q Q Q function)。

定义 1 ( Q Q Q函数) 完全数据的对数似然函数 ln ⁡ P ( X , Z ∣ θ ) \ln P(X, Z \mid \theta) lnP(X,Zθ)关于在给定观测数据 X X X和当前参数 θ ( i ) \theta^{(i)} θ(i)下对未观测数据 Z Z Z的条件概率分布 P ( Z ∣ X , θ ( i ) ) P(Z \mid X, \theta^{(i)}) P(ZX,θ(i))的期望称为 Q Q Q函数,即
Q ( θ ∣ X , θ ( i ) ) = E Z [ ln ⁡ P ( X , Z ∣ θ ) ∣ X , θ ( i ) ] (11) Q(\theta \mid X,\theta^{(i)})= E_Z[\ln P(X, Z \mid \theta) \mid X, \theta^{(i)}] \tag{11} Q(θX,θ(i))=EZ[lnP(X,Zθ)X,θ(i)](11)


式 (13) 关于 θ \theta θ 的最大化:

θ ( i + 1 ) = arg ⁡ max ⁡ θ Q ( θ ∣ X , θ ( i ) ) (14) \theta^{(i+1)} = \arg \max_{\theta} Q(\theta \mid X,\theta^{(i)}) \tag{14} θ(i+1)=argθmaxQ(θX,θ(i))(14)

θ ( i + 1 ) \theta^{(i+1)} θ(i+1)必然提高了对数似然(待证明),即 L ( θ ( i + 1 ) ) > L ( θ ( i ) ) L(\theta^{(i+1)}) > L(\theta^{(i)}) L(θ(i+1))>L(θ(i)),除非其已经达到 L ( θ ) L(\theta) L(θ) 的局部最大值,在这种情况下, L ( θ ( i + 1 ) ) = L ( θ ( i ) ) L(\theta^{(i+1)}) = L(\theta^{(i)}) L(θ(i+1))=L(θ(i))

EM 算法最初猜想 θ = θ ( 0 ) \theta = \theta^{(0)} θ=θ(0),然后在估计 θ ( i ) \theta^{(i)} θ(i) 的当前值计算式 (13)(称为“E 步”)和最大化式 (14) 这两个步骤之间迭代,以得到下一个估计 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)


算法 离散隐藏变量下的期望-最大化 (EM)算法

输入: 观测变量数据 X X X, 隐变量数据 Z Z Z, 联合分布 P ( X , Z ∣ θ ) P(X, Z \mid \theta) P(X,Zθ), 条件分布 P ( Z ∣ X , θ ) P(Z \mid X, \theta) P(ZX,θ);
输出: 模型参数 θ \theta θ

  1. 初始化 θ ( 0 ) \theta^{(0)} θ(0) τ > 0 \tau > 0 τ>0
  2. repeat
  3. E 步:计算 Q ( θ ∣ X , θ ( i ) ) Q(\theta \mid X,\theta^{(i)}) Q(θX,θ(i))

Q ( θ ∣ X , θ ( i ) ) = E Z [ ln ⁡ P ( X , Z ∣ θ ) ∣ X , θ ( i ) ] = ∑ Z ln ⁡ P ( X , Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) \begin{aligned} Q(\theta \mid X,\theta^{(i)}) &= E_Z[\ln P(X, Z \mid \theta) \mid X, \theta^{(i)}]\\ &= \sum_Z \ln P(X, Z \mid \theta) P(Z \mid X, \theta^{(i)}) \end{aligned} Q(θX,θ(i))=EZ[lnP(X,Zθ)X,θ(i)]=ZlnP(X,Zθ)P(ZX,θ(i))

这里, P ( Z ∣ X , θ ( i ) ) P(Z \mid X, \theta^{(i)}) P(ZX,θ(i))是在给定观测数据 X X X和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据 Z Z Z的条件概率分布;

  1. M 步:求使 Q ( θ ∣ X , θ ( i ) ) Q(\theta \mid X,\theta^{(i)}) Q(θX,θ(i))极大化的 θ \theta θ,更新参数

θ ( i + 1 ) = arg ⁡ max ⁡ θ Q ( θ ∣ X , θ ( i ) ) \theta^{(i+1)} = \arg \max_{\theta} Q(\theta \mid X,\theta^{(i)}) θ(i+1)=argθmaxQ(θX,θ(i))

  1. 计算对数似然:

L ( θ ( i + 1 ) ) = ln ⁡ P ( X ∣ θ ( i + 1 ) ) L(\theta^{(i+1)}) = \ln P(X \mid \theta^{(i+1)}) L(θ(i+1))=lnP(Xθ(i+1))

  1. until ∣ L ( θ ( i + 1 ) ) − L ( θ ( i ) ) ∣ < τ |L(\theta^{(i+1)}) - L(\theta^{(i)})| < \tau L(θ(i+1))L(θ(i))<τ

http://www.yayakq.cn/news/281365/

相关文章:

  • 哪个视频网站做视频最赚钱的玩具租赁系统网站开发与实现
  • 宁波建设银行网站首页品牌建设 凝心
  • 邹城住房城乡建设部网站网站需求分析与设计方案
  • 网站建设的违约责任怎么写带积分的网站建设
  • 成都快速建网站wordpress 假用户插件
  • 长沙做最好网站wordpress home
  • 上海建设厅官网站特种工证查询手机网站弹出提示框
  • 长春公司网站推广注册域名查询网站
  • 找哪个网站做摩配江门网页建站模板
  • 关于网站建设的总结网站 做 vga
  • 哪个网站可以做顺风车模板下载失败
  • 营销网站建设公司有哪些上传更新wordpress
  • 搭建个人视频网站西安买公司的网站建设
  • 营销型网站有哪些特点汇鑫小学网站建设
  • 制作网站软件程序开发步骤
  • 帮别人做网站服务器网站后台传图片
  • 北海做网站有哪家好珠海网站制作平台
  • 做网站义乌有专门做宝宝用品的网站吗
  • 学校网站建设的好处可以自己设计装修的免费软件
  • 百度网盘可以做网站吗?兰州电商网站建设
  • 公司网站建设哪里实惠网站建设费放什么科目
  • ppt里做网站效果南通建设网站
  • 如何让新网站东莞常平建网站公司
  • 硅谷电视剧他们做的是网站还是软件网络营销案例分析题万能模板
  • 门户网站建设 工具网站静态文件
  • 传奇手游新开服网站wordpress 公司网站 模板 下载
  • 建站什么程序好栖霞网站设计
  • 制作广告网站的步骤Wordpress上传媒体错误
  • 图片分享网站建设中美关系最新消息
  • 访问自己做的网站吗凡科网站建设步骤