当前位置: 首页 > news >正文

做网站背景图片django 开放api 做网站

做网站背景图片,django 开放api 做网站,南京软件外包公司排名,创建一个新的公司网站介绍: 欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。 展示: 训练展示如下…

介绍:

欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。

展示:
训练展示如下:

在这里插入图片描述
在这里插入图片描述

实际使用如下:

请添加图片描述

实现方式:

选择PyTorch作为深度学习框架,使用电影评论IMDB数据集,并结合torchtext对数据进行预处理。

环境:

Windows+Anaconda
重要库版本信息
torch==1.8.2+cu102
torchaudio==0.8.2
torchdata==0.7.1
torchtext==0.9.2
torchvision==0.9.2+cu102

实现思路:

1、数据集
本次使用的是IMDB数据集,IMDB是一个含有50000条关于电影评论的数据集
数据如下:
请添加图片描述
请添加图片描述

2、数据加载与预处理
使用torchtext加载IMDB数据集,并对数据集进行划分
具体划分如下:

TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float)
# Load the IMDB dataset
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

创建一个 Field 对象,用于处理文本数据。同时使用spacy分词器对文本进行分词,由于IMDB是英文的,所以使用en_core_web_sm语言模型。
创建一个 LabelField 对象,用于处理标签数据。设置dtype 参数为 torch.float,表示标签的数据类型为浮点型。

使用 datasets.IMDB.splits 方法加载 IMDB 数据集,并将文本字段 TEXT 和标签字段 LABEL 传递给该方法。返回的 train_data 和 test_data 包含了 IMDB 数据集的训练和测试部分。
下面是train_data的输出
请添加图片描述

3、构建词汇表与加载预训练词向量

TEXT.build_vocab(train_data,max_size=25000,vectors="glove.6B.100d",unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)

train_data:表示使用train_data中数据构建词汇表
max_size:限制词汇表的大小为 25000
vectors=“glove.6B.100d”:表示使用预训练的 GloVe 词向量,其中 “glove.6B.100d” 指的是包含 100 维向量的 6B 版 GloVe。
unk_init=torch.Tensor.normal_ :表示指定未知单词(UNK)的初始化方式,这里使用正态分布进行初始化。
LABEL.build_vocab(train_data):表示对标签进行类似的操作,构建标签的词汇表

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size=BATCH_SIZE, device=device)

使用data.BucketIterator.splits 来创建数据加载器,包括训练、验证和测试集的迭代器。这将确保你能够方便地以批量的形式获取数据进行训练和评估。

4、定义神经网络
这里的网络定义比较简单,主要采用在词嵌入层(embedding)后接一个全连接层的方式完成对文本数据的分类。
具体如下:

class NetWork(nn.Module):def __init__(self,vocab_size,embedding_dim,output_dim,pad_idx):super(NetWork,self).__init__()self.embedding = nn.Embedding(vocab_size,embedding_dim,padding_idx=pad_idx)self.fc = nn.Linear(embedding_dim,output_dim)self.dropout = nn.Dropout(0.5)self.relu = nn.ReLU()def forward(self,x):embedded = self.embedding(x)embedded = embedded.permute(1,0,2) pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)pooled = self.relu(pooled)pooled = self.dropout(pooled)output = self.fc(pooled)return output

5、模型初始化

vocab_size = len(TEXT.vocab)
embedding_dim  = 100
output = 1
pad_idx = TEXT.vocab.stoi[TEXT.pad_token]
model = NetWork(vocab_size,embedding_dim,output,pad_idx)
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)

定义模型的超参数,包括词汇表大小(vocab_size)、词向量维度(embedding_dim)、输出维度(output,在这个任务中是1,因为是二元分类,所以使用1),以及 PAD 标记的索引(pad_idx)

之后需要将预训练的词向量加载到嵌入层的权重中。TEXT.vocab.vectors 包含了词汇表中每个单词的预训练词向量,然后通过 copy_ 方法将这些词向量复制到模型的嵌入层权重中对网络进行初始化。这样做确保了模型的初始化状态良好。

6、训练模型

 total_loss = 0train_acc = 0 
model.train()
for batch in train_iterator:optimizer.zero_grad()preds = model(batch.text).squeeze(1)loss = criterion(preds,batch.label)total_loss += loss.item()batch_acc = (torch.round(torch.sigmoid(preds)) == batch.label).sum().item()train_acc += batch_accloss.backward()optimizer.step()average_loss = total_loss / len(train_iterator)train_acc /= len(train_iterator.dataset)

optimizer.zero_grad():表示将模型参数的梯度清零,以准备接收新的梯度。
preds = model(batch.text).squeeze(1):表示一次前向传播的过程,由于model输出的是torch.tensor(batch_size,1)所以使用squeeze(1)给其中的1维度数据去除,以匹配标签张量的形状
criterion(preds,batch.label):定义的损失函数 criterion 计算预测值 preds 与真实标签 batch.label 之间的损失

(torch.round(torch.sigmoid(preds)) == batch.label).sum().item():
通过比较模型的预测值与真实标签,计算当前批次的准确率,并将其累加到 train_acc 中
后面的就是进行反向传播更新参数,还有就是计算loss和train_acc的值了
7、模型评估:

model.eval()valid_loss = 0valid_acc = 0best_valid_acc = 0with torch.no_grad():for batch in valid_iterator:preds = model(batch.text).squeeze(1)loss = criterion(preds,batch.label)valid_loss += loss.item()batch_acc = ((torch.round(torch.sigmoid(preds)) == batch.label).sum().item())valid_acc += batch_acc

和训练模型的类似,这里就不解释了

8、保存模型
这里一共使用了两种保存模型的方式:

torch.save(model, "model.pth")
torch.save(model.state_dict(),"model.pth")

第一种方式叫做模型的全量保存
第二种方式叫做模型的参数保存

全量保存是保存了整个模型,包括模型的结构、参数、优化器状态等信息
参数量保存是保存了模型的参数(state_dict),不包括模型的结构
9、测试模型
测试模型的基本思路:
加载训练保存的模型、对待推理的文本进行预处理、将文本数据加载给模型进行推理

加载模型:

saved_model_path = "model.pth"
saved_model = torch.load(saved_model_path)

输入文本:
input_text = “Great service! The staff was very friendly and helpful.”

文本进行处理:

tokenizer = get_tokenizer("spacy", language="en_core_web_sm")
tokenized_text = tokenizer(input_text)
indexed_text = [TEXT.vocab.stoi[token] for token in tokenized_text]
tensor_text = torch.LongTensor(indexed_text).unsqueeze(1).to(device)

模型推理:

saved_model.eval()
with torch.no_grad():output = saved_model(tensor_text).squeeze(1)prediction = torch.round(torch.sigmoid(output)).item()probability = torch.sigmoid(output).item()

由于笔者能力有限,所以在描述的过程中难免会有不准确的地方,还请多多包含!

更多NLP和CV文章以及完整代码请到"陶陶name"获取。

http://www.yayakq.cn/news/495186/

相关文章:

  • 网站建设中啥意思淘宝网站开发要多久
  • 西安网站建设企业深圳兆富资本非吸案4人被判刑
  • 织梦网站模板源码下载好用的ppt模板网站免费
  • 如何查网站是织梦做的各种网站都能打开的浏览器
  • 网站网络排名优化方法网站主页的要素
  • 陕西住房和城乡建设厅网站6国内免费注册二级域名的网站
  • 深圳鸿运通网站建设史上最全的微信小程序代码大全
  • 简约的网站设计seo关键词优化到首页
  • php装修门户网站源码微信系统平台开发
  • 搜狐网站开发做视频网站资金多少
  • 原有网站已备案 怎么做接入公司做网站之前要准备什么软件
  • php网站编程网站400
  • 网上做预算的网站精品成品网站1688
  • 邯郸企业网站建设报价深一集团的网站谁做的
  • 有了网站的域名下一步怎么做翠屏区网站建设
  • 创意网站布局网站设计常见流程
  • angularjs做的网站有哪些廊坊做网站的企业哪家好
  • 做公司网站流程制作网页的基本步骤记事本
  • 网站建设及报价方案wordpress o'connor
  • 公司网站开发国内外现状iphone怎么开通互联网
  • 制学网网站网络推广的方法你知道几个?
  • 热 综合-网站正在建设中汽车网站开发思路
  • 官方网站建设专家磐石网络微信链接网站怎么做的
  • 企业发展历程网站开发公司项目总是分公司总经理吗
  • 网站排名优化各公司的一级a做爰精免费网站
  • 建站模板有哪些制作企业网站多少钱
  • 信贷网站建设网站开发工作基础
  • 查询网站备案直播教育网站建设
  • 自己做淘宝返利网站吗手机制作表格教程
  • 网站建设源文件苏州制作网页哪家好