当前位置: 首页 > news >正文

集团门户网站建设方案怎么做淘宝企业网站

集团门户网站建设方案,怎么做淘宝企业网站,班级网站建设方案书,每平设计家官网torch. detach()拼接函数torch.stack()torch.nn.DataParallel()np.clip()torch.linspace()PyTorch中tensor.repeat()pytorch索引查找 index_select detach() detach是截断反向传播的梯度流 将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度…

torch.

  • detach()
  • 拼接函数torch.stack()
  • torch.nn.DataParallel()
  • np.clip()
  • torch.linspace()
  • PyTorch中tensor.repeat()
  • pytorch索引查找 index_select

detach()

detach是截断反向传播的梯度流
将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度就不会从这个node往前面传播。

拼接函数torch.stack()

拼接:将多个维度参数相同的张量连接成一个张量

a=torch.tensor([[1,2,3],[4,5,6]])
b=torch.tensor([[10,20,30],[40,50,60]])
c=torch.tensor([[100,200,300],[400,500,600]])
print(torch.stack([a,b,c],dim=0))
print(torch.stack([a,b,c],dim=1))
print(torch.stack([a,b,c],dim=2))
print(torch.stack([a,b,c],dim=0).size())
print(torch.stack([a,b,c],dim=1).size())
print(torch.stack([a,b,c],dim=2).size())
#输出结果为:
tensor([[[  1,   2,   3],[  4,   5,   6]],[[ 10,  20,  30],[ 40,  50,  60]],[[100, 200, 300],[400, 500, 600]]])
tensor([[[  1,   2,   3],[ 10,  20,  30],[100, 200, 300]],[[  4,   5,   6],[ 40,  50,  60],[400, 500, 600]]])
tensor([[[  1,  10, 100],[  2,  20, 200],[  3,  30, 300]],[[  4,  40, 400],[  5,  50, 500],[  6,  60, 600]]])
torch.Size([3, 2, 3])
torch.Size([2, 3, 3])
torch.Size([2, 3, 3])

torch.nn.DataParallel()

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
module即表示你定义的模型,device_ids表示你训练的device,output_device这个参数表示输出结果的device,而这最后一个参数output_device一般情况下是省略不写的,那么默认就是在device_ids[0],也就是第一块卡上。

np.clip()

a = np.arange(10)
np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) # a被限制在1-8之间
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # 没改变a的原值np.clip(a, 3, 6, out=a) # 修剪后的数组存入到a中
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

torch.linspace()

函数的作用是,返回一个一维的tensor,这个张量包含了从start到end,分成steps个线段得到的向量。

torch.linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 
→ Tensor

例如

import torch
print(torch.linspace(3,10,5))
#tensor([ 3.0000,  4.7500,  6.5000,  8.2500, 10.0000])type=torch.float
print(torch.linspace(-10,10,steps=6,dtype=type))
#tensor([-10.,  -6.,  -2.,   2.,   6.,  10.])

PyTorch中tensor.repeat()

当参数只有两个时,第一个参数表示的是行复制的次数,第二个参数表示列复制的次数;
当参数有三个时,第一个参数表示的是通道复制的次数,第二个参数表示的是行复制的次数,第三个参数表示列复制的次数。
(1). 对于已经存在的维度复制

import torcha = torch.tensor([[1], [2], [3]])  # 3 * 1
b = a.repeat(3, 2)
print('a\n:', a)
print('shape of a', a.size())  # 原始shape = (3,1)
print('b:\n', b)
print('shape of b', b.size())  # 新的shape = (3*3,1*2),新增加的数据通过复制得到'''   运行结果   '''
a:
tensor([[1],[2],[3]])
shape of a torch.Size([3, 1])  注: 原始shape =31)
b:tensor([[1, 1],[2, 2],[3, 3],[1, 1],[2, 2],[3, 3],[1, 1],[2, 2],[3, 3]])
shape of b torch.Size([9, 2])  新的shape =3*31*2

(2). 对于原始不存在的维度数量拓展

import torch
a = torch.tensor([[1, 2], [3, 4], [5, 6]])  # 3 * 2
b = a.repeat(3, 2, 1)   # 在原始tensor的0维前拓展一个维度,并把原始tensor的第1维扩张2倍,都是通过复制来完成的
print('a:\n', a)
print('shape of a', a.size())  # 原始维度为 (3,2)
print('b:\n', b)
print('shape of b', b.size())  # 新的维度为 (3,2*2,2*1)=(3,4,2)'''   运行结果   '''
a:tensor([[1, 2],[3, 4],[5, 6]])
shape of a torch.Size([3, 2])   注:原始维度为 (32)
b:tensor([[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]],[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]],[[1, 2],[3, 4],[5, 6],[1, 2],[3, 4],[5, 6]]])
shape of b torch.Size([3, 6, 2])   新的维度为 (32*22*1=342

pytorch索引查找 index_select

anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))

先定义了一个tensor,这里用到了linspace和view方法。
第一个参数是索引的对象,第二个参数0表示按行索引,1表示按列进行索引,第三个参数是一个tensor,就是索引的序号,比如b里面tensor[0, 2]表示第0行和第2行,c里面tensor[1, 3]表示第1列和第3列

a = torch.linspace(1, 12, steps=12).view(3, 4)
print(a)
b = torch.index_select(a, 0, torch.tensor([0, 2]))
print(b)
print(a.index_select(0, torch.tensor([0, 2])))
c = torch.index_select(a, 1, torch.tensor([1, 3]))
print(c)-----输出结果-----
tensor([[ 1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.],[ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],[ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],[ 9., 10., 11., 12.]])
tensor([[ 2.,  4.],[ 6.,  8.],[10., 12.]])
http://www.yayakq.cn/news/731602/

相关文章:

  • 专业网站推广服务咨询潮流资讯类网站建设策划
  • 响应式网站的费用北京好的网站开发
  • 网站开发 程序开发阶段短网址生成器在线
  • 县总工会网站建设情况做网站先付款
  • 网站建设业务开展方案wordpress精简代码
  • 著名网站设计师天猫网站是怎么做seo优化的
  • 台州建设网站公司免费引流推广工具
  • 网站空间管理系统网站能当做创业来做吗
  • 昆明网站做的好的公司如何在app上做网站
  • 公司建网站多少钱一个月手机端搜索引擎排名
  • 巴中网站建设有限公司php模板源码
  • 网站建设金手指15什么为网站建设提供基础素材
  • 网站外链隐形框架开放大学门户网站建设
  • 做网站需要哪些准备cdn wordpress ip统计
  • 手机端怎么网站建设连山网站建设
  • 成都网站公司网站建设设计师做私单网站
  • 临湘建设局网站二级域名搜索
  • 网站开发便宜上上海网站设计建设
  • 网站微信登录怎么做的云空间网站
  • 音乐网站 模板卖游戏辅助的网站怎么建设
  • 自己做视频网站有点卡阿里云主机 多个网站
  • 上海网站制作网站建设建筑公司发展愿景
  • 设计网站公司只找亿企邦微信运营商
  • 网站本地环境搭建网址搜索域名查询
  • 怎么网站设计.net网站如何优化
  • 做欧美市场的网站网站建设以及推广提案书
  • 中国风html5网站模板免费下载怎么帮自己做的网站申请地址
  • 小吃网站建设网络营销推广方案内容
  • 合肥网站建设哪个好网站建设维护方向
  • 中英文网站建设价格广州公司注册提供地址