当前位置: 首页 > news >正文

带有响应式的网站企业推广宣传方式

带有响应式的网站,企业推广宣传方式,网页制作的常用开发工具是什么,虚拟商品自动发货网站搭建教程《机器学习》基础概念之【P问题】与【NP问题】 这里写目录标题《机器学习》基础概念之【P问题】与【NP问题】一、多项式&时间复杂度1.1. 多项式1.2.时间复杂度二、P问题 & NP问题2.1. P问题2.2.NP问题2.3.举例理解NP问题-TSP旅行商推销问题三、NP-hard问题&NP-C问题…

《机器学习》基础概念之【P问题】与【NP问题】


这里写目录标题

  • 《机器学习》基础概念之【P问题】与【NP问题】
  • 一、多项式&时间复杂度
    • 1.1. 多项式
    • 1.2.时间复杂度
  • 二、P问题 & NP问题
    • 2.1. P问题
    • 2.2.NP问题
    • 2.3.举例理解NP问题-TSP旅行商推销问题
  • 三、NP-hard问题&NP-C问题
    • 3.1.NP-hard问题
    • 3.2. NP-C问题
  • 四、P&NP的联系
    • 4.1. 理想:NP问题 = P问题
    • 4.2.现实:我们仍然相信 P问题!=NP问题


一、多项式&时间复杂度


1.1. 多项式

axn+bxn−1+cax^{n} + b x^{n-1}+caxn+bxn1+c 形如这种形式的就被称为 xxx 的最高位为 nnn 的多项式。


1.2.时间复杂度

定义为:随着问题规模的增大,算法执行时间增长的快慢。

它可以用来表示一个算法运行的 时间效率\red{时间效率}时间效率

举个例子,冒泡排序的时间复杂度为 O(n2)O(n^2)O(n2) , 取其最高次,可以看出,这是一个时间复杂度为多项式的表示方式。


二、P问题 & NP问题


2.1. P问题

P(deterministic polynomial time question):

多项式时间问题,简称 P 问题,意思是能在多项式时间内解决的问题。

简单理解是算起来很快的问题。


2.2.NP问题

NP(No-deterministic polynomial time question):

非确定多项式时间问题,简称 NP 问题,就是能在多项式时间验证答案正确与否的问题。

简单的理解是NP问题算起来不一定快,但对于任何答案我们都可以快速的验证这个答案对不对。


2.3.举例理解NP问题-TSP旅行商推销问题

最著名的 NP 问题是TSP旅行商推销问题

题目是在以下条件下,求出访问所有城市的最短路径

  • 推销商有N个目的地城市
  • 他需要访问所有城市一次,即不能重复
  • 任意两座城市都是连接的,距离已知,即对应有权完全图

分析:

解决这个问题如果单纯的用枚举法来列举的话会有(n−1)!(n-1)!(n1)! 种,已经不是多项式时间的算法了。将会是N的阶乘的复杂度O(n!)O(n!)O(n!)

但是有快捷的方法,可以用猜的,假设人品爆炸猜几次就猜中了一条小于长度a的路径,TSP问题解决了,皆大欢喜。

可是,我不可能每次都猜的那么准,也许我要猜完所有种方案呢?

所以我们说,这是一个NP类问题。也就是这个问题能在多项式的时间内验证并得出问题的正确解,可是我们却不知道该问题是否存在一个多项式时间的算法,每次都能解决他(注意,这里是不知道,不是不存在,即能解决,但是无法找到一个多项式时间的算法的通解)。

  • 其他NP问题:

Edge Cover 边覆盖
Set Cover 集合覆盖
Steiner Tree(Forest) 斯坦纳树
Max cut 最大割
SAT 可满足性


三、NP-hard问题&NP-C问题


3.1.NP-hard问题

  • NP-hardness问题:

任意 NP 问题都可以在多项式时间内归约为一类问题,这类问题就称为 NP-hard 问题,这是比所有的NP问题都难的问题。

归约的意思是为了解决问题A,先将问题A归约为另一个问题B,解决问题B同时也间接解决了问题A。


3.2. NP-C问题

  • NP-Complete问题:

但若所有的NP问题都能多项式归约到一类问题X,则称X为NP-hard问题,进一步如果X是NP的,称X是NP complete的。

换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:一是NP-hard的问题,二是NP问题。


四、P&NP的联系

4.1. 理想:NP问题 = P问题

NP=PNP=PNP=P 意思是,如果对于一个问题能在多项式时间内验证其答案的正确性,那么是否能在多项式时间内解决它。

因为如果将所有的NP问题都 多项式规约 到某一个NP Complete问题,且只要一个NP Complete问题能在多项式时间内得到解决的话,那么所有的NP问题都可以在多项式时间内得到解决了。这个问题的解决将会带来世界性的进步。


4.2.现实:我们仍然相信 P问题!=NP问题

P≠NPP {\not=} NPP=NP
至今并没有人能证明某个NP Complete问题是P的。而且目前主流的观点是P不等于NP,当然这也没有确切的证明。如左图所示。

在这里插入图片描述


http://www.yayakq.cn/news/178134/

相关文章:

  • 装修公司网站建设方案网站公司哪家好
  • 厦门网站优化推广宝安区在深圳排第几
  • 珠宝网站谁家做的好芜湖高端网站建设公司
  • 网站建设属于税收手机网站wap
  • 网站建设公司推广网站品牌运营公众号网页版
  • 定制建站网页设计基础学什么
  • 怎么创建卡密网站wordpress 图片超链接
  • 网站查询功能代码张雪峰对市场营销专业的建议
  • wild合成版是哪个网站做的淘宝网店代运营
  • 网站系统源代码仙桃做网站找谁
  • 做网站的去哪找私活wordpress 文章宽度
  • 教人做饮料的网站win7优化工具哪个好用
  • 网站建设优化公司做网站群的公司
  • 广州市网站建设品牌摄影网站模版
  • 电子商务网站建设计划广告开户
  • 制作论坛做网站wordpress菜单属性
  • 网站建网站建站wordpress去水印插件
  • 建设公司网站意义怎么做百度自己的网站空间
  • wap asp网站模板下载如何成为网页设计师
  • 室内设计网站平台源码交易网站
  • 晋城市住房保障和城乡建设局网站dw设计一个简单网站
  • 响应式旅游网站模板微网站站点名称
  • 网站流量突然增加网站建设是怎么赚钱
  • 建设网站一般要多少钱创立公司网站
  • 海南省住房和城市建设厅网站网站建设书籍论文
  • 天津 网站 备案wordpress组合模板
  • 网站建设自查wordpress 3.1.3
  • 网站 先建设还是先等级保护备案云南 房地产网站建设
  • 网站建设方案书范本高州女网红遇害案犯罪嫌疑人被抓获
  • 有没有做请帖的网站企业查询软件免费