当前位置: 首页 > news >正文

网站建设价格最低多少钱江门网站建设设计

网站建设价格最低多少钱,江门网站建设设计,正规的装饰行业网站建设公司,wordpress安装不了插件之前博客进行了COLMAP在服务器下的测试 实验笔记之——Linux实现COLMAP-CSDN博客文章浏览阅读794次,点赞24次,收藏6次。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis&#xf…

之前博客进行了COLMAP在服务器下的测试

实验笔记之——Linux实现COLMAP-CSDN博客文章浏览阅读794次,点赞24次,收藏6次。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。之前博客跑instant-NGP的时候,除了用官方的数据集,用自己的数据则是通过手机采集,同时获得pose与image。https://blog.csdn.net/gwplovekimi/article/details/135389922?spm=1001.2014.3001.5501而下面两个博客则分别实现了NGP与3DGS

实验笔记之——基于Linux服务器复现Instant-NGP及常用的tmux指令-CSDN博客文章浏览阅读255次,点赞7次,收藏6次。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。配置好后,通过./instant-ngp或者scripts/run.py就可以运行了。这个编译好像比较耗费时间~https://blog.csdn.net/gwplovekimi/article/details/135365847?spm=1001.2014.3001.5501实验笔记之——Gaussian Splatting-CSDN博客文章浏览阅读691次,点赞23次,收藏8次。之前博客对NeRF-SLAM进行了调研学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。https://blog.csdn.net/gwplovekimi/article/details/135349210?spm=1001.2014.3001.5501这两篇博客中,测试public的数据集效果都不错,但是用iphone的record3D录制的要么不能用要么效果很差,为此统一采用COLMAP来计算pose,再次进行测试以及对比两个方法

目录

基于COLMAP的3DGS

基于COLMAP的NGP

3DGS训练好的模型加载进行可视化


基于COLMAP的3DGS

GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"

首先分别运行下面的命令来启动3DGS并可视化其在线训练的过程

conda activate 3DGScd gaussian-splatting/python train.py -s /home/gwp/dataset/30fps下面在MobaXterm下运行conda activate 3DGScd gaussian-splatting/./SIBR_viewers/install/bin/SIBR_remoteGaussian_app

训练5分钟左右的结果

训练过程的各种视角请见下视频

基于COLMAP测试3D Gaussian Splatting(训练过程可视化)

基于COLMAP的NGP

GitHub - NVlabs/instant-ngp: Instant neural graphics primitives: lightning fast NeRF and more

https://github.com/NVlabs/instant-ngp/blob/master/docs/nerf_dataset_tips.md

由于NGP支持的数据格式跟3DGS稍有不同,为此需要进行处理

对于参数“aabb_scale ”,如说明文档所言:

“The aabb_scale parameter is the most important instant-ngp specific parameter. It specifies the extent of the scene, defaulting to 1; that is, the scene is scaled such that the camera positions are at an average distance of 1 unit from the origin. For small synthetic scenes such as the original NeRF dataset, the default aabb_scale of 1 is ideal and leads to fastest training. The NeRF model makes the assumption that the training images can entirely be explained by a scene contained within this bounding box. However, for natural scenes where there is a background that extends beyond this bounding box, the NeRF model will struggle and may hallucinate "floaters" at the boundaries of the box. By setting aabb_scale to a larger power of 2 (up to a maximum of 128), the NeRF model will extend rays to a much larger bounding box. Note that this can impact training speed slightly. If in doubt, for natural scenes, start with an aabb_scale of 128, and subsequently reduce it if possible. The value can be directly edited in the transforms.json output file, without re-running the scripts/colmap2nerf.py script.”

aabb_scale 参数是最重要的 instant-ngp 特定参数。指定场景的范围,默认为1;也就是说,场景被缩放,使得摄像机位置距原点的平均距离为 1 个单位。对于小型合成场景(例如原始 NeRF 数据集),默认的 aabb_scale 1 是理想的,并且可以实现最快的训练。 NeRF 模型假设训练图像可以完全由该边界框内包含的场景来解释。然而,对于背景超出此边界框的自然场景,NeRF 模型将陷入困境,并可能在框的边界处产生“漂浮物”的幻觉。通过将 aabb_scale 设置为更大的 2 次方(最大可达 128),NeRF 模型会将光线扩展到更大的边界框。请注意,这可能会稍微影响训练速度。如果有疑问,对于自然场景,请从 128 的 aabb_scale 开始,然后在可能的情况下减小它。该值可以直接在transforms.json输出文件中编辑,无需重新运行scripts/colmap2nerf.py脚本。

那么此处就先设置为128吧~

data-folder$ python ~/instant-ngp/scripts/colmap2nerf.py --colmap_matcher exhaustive --run_colmap --aabb_scale 128

注意图片的文件名字需要是images(当然也可以通过输入参数修改了)

过程感觉跟3DGS中的差不多~也是一样的耗时hhh(记得要开tmux),只是数据格式支持不一样~

不知道为啥生成的transform.json只有2个camera~

改为下面的命令测试则可以了!(添加了--colmap_camera_model SIMPLE_PINHOLE)

data-folder$ python ~/instant-ngp/scripts/colmap2nerf.py --colmap_matcher exhaustive --run_colmap --aabb_scale 32 --colmap_camera_model SIMPLE_PINHOLE

同时用colmap gui也试试

NGP的运行代码如下:

conda activate nerf-ngpcd instant-ngp/./instant-ngp /home/gwp/dataset/30fps_for_ngp/

结果如下图所示

虽然渲染久一些效果会有点提升

但是这个效果应该是不如3DGS的~(这可能也跟上面提到的aabb_scale有关)

把值从32改为1的效果如下:

好像更差~那改为128呢?

好像有点提升,但是比起3DGS还是差一些~

渲染的过程可视化如下

基于COLMAP测试Instant-NGP(训练过程可视化)

3DGS训练好的模型加载进行可视化

上面的测试中都是边训练边看效果,此处看看直接训练好开奖的结果吧哈~

如下图所示,大概半个小时左右,训练好了一个3DGS,看着PSNR还挺高的,打算加载看看效果~

平时边训练边看结果的代码如下:

conda activate 3DGScd gaussian-splatting/./SIBR_viewers/install/bin/SIBR_remoteGaussian_app

但如果当前没有训练会看到加载的空空如也~

细看gaussian-splatting/的文件组成会发现,它会把训练的结果保存在output中

这个就是当前训练好的模型了。如果要指向某个训练好的模型,应该是

./<SIBR install dir>/bin/SIBR_gaussianViewer_app -m <path to trained model>./SIBR_viewers/install/bin/SIBR_gaussianViewer_app -m "/home/gwp/gaussian-splatting/output/1f6d93f1-5/"

效果如下视频所示

基于COLMAP测试3D Gaussian Splatting(训练好的模型)

http://www.yayakq.cn/news/360672/

相关文章:

  • o2o网站咋建设谷歌wordpress优化
  • 四川信德建设有限公司网站湖南专业seo推广
  • 新桥网站建设怎么做亚马逊网站
  • 黄石本土做网站的公司八爪鱼采集器WordPress接口
  • 湖南网站建设有限公司内部劵淘网站怎么做
  • 加快门户网站建设wordpress右浮动
  • 北京火车站建站时间中英文 wordpress
  • 广元市建设银行网站创意网站建设设计公司
  • 网站开发团队成员水果销售网站模板
  • 制作网站软件网站天津手机网站建设制作
  • 魅影传说网页游戏开服表芜湖网站优化
  • 宝塔网站建设跳转微信可打开浏览有关小城镇建设的网站记录
  • 学做预算有网站吗wordpress 分类 配图
  • 可以做ppt的网站或软件广东省建设信息网网站
  • 宠物电商网站模板平台seo
  • 商品网站建设实验报告网站制作模板过程
  • 做网站怎么字体全部变粗了自己做的网站怎么上传到网络
  • 东莞网站平台费用卧龙区建网站
  • 论坛型网站怎么做室内装饰设计费收费标准
  • 创业网站模板免费下载最新国际新闻10条简短
  • 电商网站建设效果3d网页游戏
  • 网站推广怎么做比较好树莓派网站建设
  • 基于c 的网站开发网站流量分成
  • 值得做的网站公众号制作模板免费
  • 郑州专业网站制作的公司哪家好自己做网站可以上传软件下载
  • 杭州 网站外包wordpress好用的富文本编辑器
  • 西安网站建设公司云网烟台开发区网站制作公司
  • 免费网站推广网站不用下载网站开发工作室 建设 方案
  • 国外案例网站wordpress外贸企业模板
  • 建设工程 质量 协会网站vue框架 wordpress