当前位置: 首页 > news >正文

网站做链接的意义是什么意思wordpress 做wikii

网站做链接的意义是什么意思,wordpress 做wikii,云虚服务器网站建设,4399影视在线观看免费高清文章目录 学习过程赛题理解学习目标赛题数据数据标签评测指标解题思路TF-IDF介绍TF-IDF 机器学习分类器TF-IDF LinearSVCTF-IDF LGBMClassifier 学习过程 20年当时自身功底是比较零基础(会写些基础的Python[三个科学计算包]数据分析),一开始看这块其实挺懵的&am…

文章目录

  • 学习过程
  • 赛题理解
  • 学习目标
  • 赛题数据
  • 数据标签
  • 评测指标
  • 解题思路
  • TF-IDF介绍
  • TF-IDF + 机器学习分类器
    • TF-IDF + LinearSVC
    • TF-IDF + LGBMClassifier


学习过程

20年当时自身功底是比较零基础(会写些基础的Python[三个科学计算包]数据分析),一开始看这块其实挺懵的,不会就去问百度或其他人,当时遇见困难挺害怕的,但22后面开始力扣题【目前已刷好几轮,博客没写力扣文章之前,力扣排名靠前已刷有5遍左右,排名靠后刷3次左右,代码功底也在一步一步提升】不断地刷、遇见代码不懂的代码,也开始去打印print去理解,到后面问其他人的问题越来越少,个人自主学习、自主解决能力也得到了进一步增强。

赛题理解

  • 赛题名称:零基础入门NLP之新闻文本分类
  • 赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
  • 赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。

学习目标

  • 理解赛题背景与赛题数据
  • 完成赛题报名和数据下载,理解赛题的解题思路

赛题数据

赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。

赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。

数据标签

处理后的赛题训练数据如下:
Image
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}

评测指标

评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。

解题思路

赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。

因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取和分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:

思路1:TF-IDF + 机器学习分类器
直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。

思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。

思路3:WordVec + 深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。

思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。

这里使用思路1(TF-IDF + 机器学习分类器) 及 思路4(Bert词向量)

TF-IDF介绍

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

TF-IDF + 机器学习分类器

TF-IDF + LinearSVC

# TF-IDF +  LinearSVC
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import f1_score, confusion_matrix, recall_score, precision_scoreprint("开始读取数据")
train_df = pd.read_csv('train_set.csv', sep='\t')
test_df = pd.read_csv('test_a.csv', sep='\t')
print("结束读取数据")print("开始tfidf")
tfidf = TfidfVectorizer(sublinear_tf=True,strip_accents='unicode',analyzer='word',token_pattern=r'\w{1,}',stop_words='english',ngram_range=(1,3),max_features=10000)tfidf.fit(pd.concat([train_df['text'], test_df['text']]))
train_word_features = tfidf.transform(train_df['text'])
test_word_features = tfidf.transform(test_df['text'])X_train = train_word_features
y_train = train_df['label']
X_test = test_word_features
print("结束tfidf")print("开始TF-IDF +  LinearSVC")
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold
KF = KFold(n_splits=10, random_state=7)
clf = LinearSVC()
test_pred = np.zeros((X_test.shape[0], 1), int)  # 存储测试集预测结果 行数:len(X_test) ,列数:1列
for KF_index, (train_index,valid_index) in enumerate(KF.split(X_train)):print('第', KF_index+1, '折交叉验证开始...')# 训练集划分x_train_, x_valid_ = X_train[train_index], X_train[valid_index]y_train_, y_valid_ = y_train[train_index], y_train[valid_index]# 模型构建clf.fit(x_train_, y_train_)# 模型预测val_pred = clf.predict(x_valid_)print("LinearSVC准确率为:",f1_score(y_valid_, val_pred, average='macro'))# 保存测试集预测结果test_pred = np.column_stack((test_pred, clf.predict(X_test)))  # 将矩阵按列合并
# 取测试集中预测数量最多的数
preds = []
for i, test_list in enumerate(test_pred):preds.append(np.argmax(np.bincount(test_list)))
preds = np.array(preds)result = pd.DataFrame(preds, columns=['label'])
result.to_csv("TFIDF_LinearSVC_submission_0304.csv", encoding='gbk', index=False)
print("结束TF-IDF +  LinearSVC")

score:0.9410

TF-IDF + LGBMClassifier

# https://github.com/Goldgaruda/Tianchi-NLP-News-Text-Classification-Rank-5-solution/blob/main/tfidf/cv.py
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score
from lightgbm import LGBMClassifierprint("开始读取数据")
train_df = pd.read_csv('train_set.csv', sep='\t')
test_df = pd.read_csv('test_a.csv', sep='\t')
print("结束读取数据")print("开始tfidf")
tfidf = TfidfVectorizer(sublinear_tf=True,strip_accents='unicode',analyzer='word',token_pattern=r'\w{1,}',stop_words='english',ngram_range=(1,3),max_features=10000)print('train_df.head():', train_df.head())tfidf.fit(np.concatenate((train_df['text'].iloc[:].values,test_df['text'].iloc[:].values),axis=0))
train_word_features = tfidf.transform(train_df['text'].iloc[:].values)
test_word_features = tfidf.transform(test_df['text'].iloc[:].values)X_train = train_word_features
y_train = train_df['label']
X_test = test_word_features
print("开始tfidf")print("开始TF-IDF +  LGBMClassifier")
KF = KFold(n_splits=5, random_state=7) 
clf = LGBMClassifier(n_jobs=-1, feature_fraction=0.7, bagging_fraction=0.4, lambda_l1=0.001, lambda_l2=0.01, n_estimators=600)# 存储测试集预测结果 行数:len(X_test) ,列数:1列
test_pred = np.zeros((X_test.shape[0], 1), int)for KF_index, (train_index,valid_index) in enumerate(KF.split(X_train)):print('第', KF_index+1, '折交叉验证开始...')# 训练集划分x_train_, x_valid_ = X_train[train_index], X_train[valid_index]y_train_, y_valid_ = y_train[train_index], y_train[valid_index]# 模型构建clf.fit(x_train_, y_train_)# 模型预测val_pred = clf.predict(x_valid_)print("LGBMClassifier准确率为:",f1_score(y_valid_, val_pred, average='macro'))# 保存测试集预测结果test_pred = np.column_stack((test_pred, clf.predict(X_test)))  # 将矩阵按列合并# 取测试集中预测数量最多的数
preds = []
for i, test_list in enumerate(test_pred):preds.append(np.argmax(np.bincount(test_list)))
preds = np.array(preds)result = pd.DataFrame(preds, columns=['label'])
result.to_csv("TFIDF_LGBMClassifier_submission_0304.csv", encoding='gbk', index=False)
print("结束TF-IDF +  LGBMClassifier")

score:0.9509

比赛源自:阿里云天池大赛 - 零基础入门NLP - 新闻文本分类

http://www.yayakq.cn/news/501262/

相关文章:

  • 国内网站建设流程seo实战指导
  • 青岛做网站的公司哪家好一点互动网站开发
  • 优质的邵阳网站建设泰安房产网58同城
  • 水利工程建设信息网站游戏币网站怎么做
  • 建始县城乡建设局网站南宁网约车租赁公司
  • 重庆做网站找谁网站项目遇到的问题
  • 食品经营许可网站增项怎么做织梦快速建站
  • 网站中的图片展示功能该设计什么成都中企动力怎么样
  • 重庆南川网站制作价格江门专业做网站
  • 常州地区做网站烟台建设联合会网站
  • 领优惠券的网站怎么做大学生活网页制作模板
  • 手机端企业网站源码上海网站建设,分类广告
  • 网站架构策划有什么做服装的网站好
  • 招聘网站做招聘顾问教育网站建站
  • 电子商务网站的特点网站如何做静态化
  • 网站假备案举报wordpress把相对路径
  • 旅游公网站如何做企业彩铃网站源码
  • 网站开发 需要用到什么软件seo如何提高网站排名
  • 怎么做带购物功能的网站海淘网站主要关键词
  • 我国企业网站的建设情况怎么seo关键词优化排名
  • 什么网站可以做平面设计赚钱wordpress替换谷歌字体库
  • 吴忠建设网站建设网站比较好的公司吗
  • 室内设计网站模板制作相册影集软件
  • 网站如何从行为数据进行优化宁波住房城乡建设局网站
  • 外贸设计网站建设企业邮箱注册申请步骤
  • 厦门专业做网站的风铃上做的网站发布时号码填写
  • 网站不备案能用吗上海比较好的网站建设公司
  • 如何做旅游网站推销app开发工具简单
  • 商务网站建设期末考试制作企业官网
  • 厦门手机建站wordpress aspnet_client