当前位置: 首页 > news >正文

中国建设银行网站首页怎么销户苏州网站建设一条龙

中国建设银行网站首页怎么销户,苏州网站建设一条龙,给我看高清的视频在线观看,html菜鸟入门教程【C模拟实现】手撕AVL树 目录 【C模拟实现】手撕AVL树AVL树的介绍(百度百科)AVL树insert函数的实现代码验证是否为AVL树AVL树模拟实现的要点易忘点AVL树的旋转思路 作者:爱写代码的刚子 时间:2023.9.10 前言:本篇博客将…

【C++模拟实现】手撕AVL树

目录

  • 【C++模拟实现】手撕AVL树
      • AVL树的介绍(百度百科)
      • AVL树insert函数的实现代码
      • 验证是否为AVL树
      • AVL树模拟实现的要点
        • 易忘点
        • AVL树的旋转思路

作者:爱写代码的刚子

时间:2023.9.10

前言:本篇博客将会介绍AVL树的模拟实现(模拟AVL树的插入),以及如何去验证是否为AVL树

AVL树的介绍(百度百科)

AVL树本质上还是一棵二叉搜索树,它的特点是:

  1. 本身首先是一棵二叉搜索树。

  2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。

AVL树insert函数的实现代码

template<class K,class V>
class AVLTreeNode
{
public:AVLTreeNode(const pair<K,V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent;//需要设立父节点指针pair<K,V> _kv;int _bf;
};template<class K,class V>
class AVLTree
{typedef AVLTreeNode<K,V> Node;
public:AVLTree():_root(nullptr){}bool insert(const pair<K,V>& kv){if(_root==nullptr){_root=new Node(kv);return true;}else{Node* cur=_root;Node* parent=nullptr;//设计parent指针是必要的while(cur){if(cur->_kv.first>kv.first){parent=cur;cur=cur->_left;}else if(cur->_kv.first<kv.first){parent=cur;cur=cur->_right;}else{return false;}}cur=new Node(kv);//判断新加入的节点是父节点的左子树还是右子树if(parent->_kv.first>kv.first){parent->_left=cur;}else{parent->_right=cur;}cur->_parent=parent;while(parent){//及时调整父节点的平衡因子if(parent->_left==cur){--parent->_bf;}else{++parent->_bf;}if(parent->_bf==0)//当父节点的平衡因子为0时停止调整{break;}else if(parent->_bf==-1||parent->_bf==1){cur=parent;parent=parent->_parent;}else if(parent->_bf==2||parent->_bf==-2)//处理异常情况{//出现问题的情况if(parent->_bf==-2&&cur->_bf==-1){_RotateR(parent);//右单旋}else if(parent->_bf==2&&cur->_bf==1){_RotateL(parent);//左单旋}else if(parent->_bf==-2&&cur->_bf==1){   _RotateLR(parent);//左右双旋}else if(parent->_bf==2&&cur->_bf==-1){_RotateRL(parent);//右左双旋}else{assert(false);}break;}else{assert(false);}}}return true;} void _RotateR(Node* parent)//右单旋的实现{Node*cur=parent->_left;Node*curRight=cur->_right;Node*ppnode=parent->_parent;cur->_right=parent;parent->_left=curRight;if(curRight)//curRight可能是nullptr{curRight->_parent=parent;}parent->_parent=cur;//处理ppnodeif(parent==_root)//parent为头节点时需要单独处理{_root=cur;cur->_parent=nullptr;}else{if(ppnode->_left==parent){ppnode->_left=cur;}else{ppnode->_right=cur;}cur->_parent=ppnode;}parent->_bf=cur->_bf=0;}void _RotateL(Node* parent){Node* cur=parent->_right;Node* curLeft=cur->_left;Node* ppnode=parent->_parent;cur->_left=parent;parent->_right=curLeft;if(curLeft){curLeft->_parent=cur;}parent->_parent=cur;if(parent==_root){_root=cur;cur->_parent=nullptr;}else{if(ppnode->_left==parent){ppnode->_left=cur;}else{ppnode->_right=cur;}cur->_parent=ppnode;}parent->_bf=cur->_bf=0;}void _RotateLR(Node* parent){Node* cur=parent->_left;Node* curRight=cur->_right;int bf=curRight->_bf;_RotateL(cur);_RotateR(parent);//最好再处理一下平衡因子,减少耦合度if(bf==0)//单链情况下{parent->_bf=0;cur->_bf=0;curRight->_bf=0;}else if(bf==-1){parent->_bf=1;curRight->_bf=0;cur->_bf=0;}else if(bf==1){parent->_bf=-1;curRight->_bf=0;cur->_bf=0;}else{assert(false);}}void _RotateRL(Node* parent){Node* cur=parent->_right;Node* curLeft=cur->_left;int bf=curLeft->_bf;_RotateR(cur);_RotateL(parent);if(bf==0){parent->_bf=0;curLeft->_bf=0;cur->_bf=0;}else if(bf==1){parent->_bf=0;curLeft->_bf=-1;cur->_bf=0;}else if(bf==-1){parent->_bf=0;curLeft->_bf=1;cur->_bf=0;}else{assert(false);}}private:Node* _root;
};

验证是否为AVL树

int _Height(Node* root){if(root==nullptr){return 0;}int leftHeight=_Height(root->_left);int rightHeight=_Height(root->_right);return leftHeight>rightHeight?leftHeight+1:rightHeight+1;}bool _Isbalance(){return _Isbalance(_root);}bool _Isbalance(Node* root){if(root==nullptr){return true;}int right=_Height(root->_right);int left=_Height(root->_left);if(root->_bf!=right-left){cout<<"平衡因子异常"<<root->_bf<<" "<<right<<" "<<left<<endl;return false;}return abs(right-left)<2&&_Isbalance(root->_left)&&_Isbalance(root->_right);}
  • 根据AVL树的特性引入两个成员函数_Height函数用于计算二叉树的高度

  • 以下为验证结果:
    在这里插入图片描述

AVL树模拟实现的要点

易忘点

一定要时刻注意_parent指针的修改!尤其旋转函数中需要判断旋转后的二叉树的根节点是否还有父亲节点,如果有,需要在旋转前先保存,之后再链接上。

AVL树的旋转思路

  1. 新增在左,parent平衡因子减减
  2. 新增在右,parent平衡因子加加
  3. 更新后parent平衡因子 == 0,说明parent所在的子树的高度不变,不会再影响祖先,不用再继续沿着到eot的路径往上更新
  4. 更新后parent平衡因子 == 1 0r -1,说明parent所在的子树的高度变化,会再影响祖先,需要继续沿着到root的路径往上更新更新后
  5. 更新后parent平衡因子 == 2 or -2,说明parent所在的子树的高度变化且不平衡,对parent所在子树进行旋转,让他平衡
  6. 更到根节点,插入结束

由于AVL树画图较为麻烦,作者先不画了,可以看看其他大佬的博客,一些需要注意的地方已经写在代码注释里了,AVL树的删除之后有机会可以模拟实现一下。
AVL树的调试较为麻烦,模拟实现可以提高自己的调试能力。

http://www.yayakq.cn/news/769520/

相关文章:

  • 基于wordpress开发cmsseo排名优化什么意思
  • 移动互联网站建设网站建设实训报告册
  • 网站后台上传图片显示运行错误为什么软件技术招聘信息
  • 自助建站免费建站五个平台家装风格效果图大全
  • ps怎么在dw上做网站莆田企业网站建设
  • 昆明做网站优化公司自己做的网站上传
  • 营销型的物流网站模板张家港微网站
  • 定制网站开发哪家强网页界面设计实验报告
  • 怎么做网站的关键词wordpress发音
  • 做网站数据库怎么整lnmp wordpress 登陆
  • 大连建设公司网站做网站的上市公司有哪些
  • 网站备案申请中国建设招标网?官方网站
  • 响应式网站模板 视差在线做爰直播网站
  • 做网站哪种域名好记呼和浩特网站优化公司
  • .net网站开发环境站长工具怎么关闭
  • 网站后期维护费用多少wordpress最快的电商主题
  • 做网站栏目是什么意思智慧团建网址
  • 建网站几个按钮哪个搜索引擎能搜敏感内容
  • 德清网站设计网站开发软件选择
  • 随州网站建设推荐外贸网站设计注意事项
  • 昆明做网站优化推广普通话手抄报模板
  • 淘宝客都在什么平台建网站电子商务网站开发案例
  • 河北网站建设方案详细中企动力做的网站被百度屏蔽
  • 二级单位网站建设中文wordpress 主题
  • 蒙古文门户网站建设督导网站建设 成都今网科技
  • 做ppt的模板的网站微信绑定网站
  • 建网站公司汽车六万公里是否累变速箱油制作app的费用
  • 宁波专业的网站搭建公司电商怎么开始做
  • 企业网站优化服务主要围绕哪些要素wordpress文章在那个文件夹
  • 织梦网站导航固定沈阳做网站比较好的公司